微积分 如图
1个回答
展开全部
令y=cosx
则dy-sinxdx
y=1,x=0
y=0,x=π/2
显然这是偶函数
所以原式=2∫(0,1)(1-y²)^(3/2)dy
=2∫(π/2,0)(sin²x)^(3/2)*(-sinxdx)
=2∫(π/2,0)-(sinx)^4dx
=2∫(0,π/2)[(1-cos2x)/2]²dx
=1/2*∫(0,π/2)(1-2cos2x+cos²2x)dx
=1/2*∫(0,π/2)[1-2cos2x+(1+cos4x)/2] dx
=1/4*∫(0,π/2)(3-4cos2x+cos4x) dx
=1/16*(12x-8sin2x+sin4x)(0,π/2)
=1/16*(6π-0+0)
=3π/8
则dy-sinxdx
y=1,x=0
y=0,x=π/2
显然这是偶函数
所以原式=2∫(0,1)(1-y²)^(3/2)dy
=2∫(π/2,0)(sin²x)^(3/2)*(-sinxdx)
=2∫(π/2,0)-(sinx)^4dx
=2∫(0,π/2)[(1-cos2x)/2]²dx
=1/2*∫(0,π/2)(1-2cos2x+cos²2x)dx
=1/2*∫(0,π/2)[1-2cos2x+(1+cos4x)/2] dx
=1/4*∫(0,π/2)(3-4cos2x+cos4x) dx
=1/16*(12x-8sin2x+sin4x)(0,π/2)
=1/16*(6π-0+0)
=3π/8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询