高数求微分方程解 求详细过程
2个回答
展开全部
let
u = y/x^2
du/dx = (1/x^2) dy/dx - 2(y/x^3)
dy/dx = x^2.[du/dx + (2/x)u ]
//
x.dy/dx -2y = 2x
dy/dx - 2(y/x) = 2
x^2.[du/dx + (2/x)u ] - 2xu =2
x^2.du/dx = 2
u = 2 ∫ dx/x^2
= -2/x + C
y/x^2 = -2/x +C
y= -2x + Cx^2
u = y/x^2
du/dx = (1/x^2) dy/dx - 2(y/x^3)
dy/dx = x^2.[du/dx + (2/x)u ]
//
x.dy/dx -2y = 2x
dy/dx - 2(y/x) = 2
x^2.[du/dx + (2/x)u ] - 2xu =2
x^2.du/dx = 2
u = 2 ∫ dx/x^2
= -2/x + C
y/x^2 = -2/x +C
y= -2x + Cx^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询