这个微分方程怎么求通解
展开全部
将特解代入微分方程得
(7/3)(x+1)^(5/2) + (2/3)(x+1)^(7/2) p(x) = (x+1)^(5/2)
得 p(x) = -2/(x+1), 微分方程是 y' - 2y/(x+1) = (x+1)^(5/2)
通解 y = e^[2dx/(x+1)] {∫(x+1)^(5/2)e^[-2dx/(x+1)]dx + C}
= (x+1)^2 [∫(x+1)^(1/2)dx + C] = (x+1)^2 [(2/3)(x+1)^(3/2) + C]
= C(x+1)^2 + (2/3)(x+1)^(7/2) , 选 D。
(7/3)(x+1)^(5/2) + (2/3)(x+1)^(7/2) p(x) = (x+1)^(5/2)
得 p(x) = -2/(x+1), 微分方程是 y' - 2y/(x+1) = (x+1)^(5/2)
通解 y = e^[2dx/(x+1)] {∫(x+1)^(5/2)e^[-2dx/(x+1)]dx + C}
= (x+1)^2 [∫(x+1)^(1/2)dx + C] = (x+1)^2 [(2/3)(x+1)^(3/2) + C]
= C(x+1)^2 + (2/3)(x+1)^(7/2) , 选 D。
追问
好像就是这样,这题我一直看的y的x次幂 幂指函数。。。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询