4个回答
展开全部
1. 令 x = sint,
I = ∫<0, π/2>(sint)^2(cost)^2dt = (1/4)∫<0, π/2>(sin2t)^2dt
= (1/8)∫<0, π/2>(1-cos4t)dt = (1/8)[t-(1/4)sin4t]<0, π/2> = π/16
2. 令 x = 2sect
I = ∫2tant 2sect tant dt / (2sect) = 2∫(tant)^2dt
= 2∫[(sect)^2-1]dt = 2tant - 2t + C = √(x^2-4) - 2arccos(2/x) + C
3. 倒置换, 令 x = 1/u, 则
I = ∫(-1/u^2)du/[(1/u)(1/u^10+1) = ∫(-u^9)du/(1+u^10)
= (-1/10)∫d(1+u^10)/(1+u^10) = (-1/10)ln(1+u^10) + C
= (-1/10)ln(1+1/x^10) + C
I = ∫<0, π/2>(sint)^2(cost)^2dt = (1/4)∫<0, π/2>(sin2t)^2dt
= (1/8)∫<0, π/2>(1-cos4t)dt = (1/8)[t-(1/4)sin4t]<0, π/2> = π/16
2. 令 x = 2sect
I = ∫2tant 2sect tant dt / (2sect) = 2∫(tant)^2dt
= 2∫[(sect)^2-1]dt = 2tant - 2t + C = √(x^2-4) - 2arccos(2/x) + C
3. 倒置换, 令 x = 1/u, 则
I = ∫(-1/u^2)du/[(1/u)(1/u^10+1) = ∫(-u^9)du/(1+u^10)
= (-1/10)∫d(1+u^10)/(1+u^10) = (-1/10)ln(1+u^10) + C
= (-1/10)ln(1+1/x^10) + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
高粉答主
2020-02-19 · 中小学教师,杨建朝,蒲城县教研室蒲城县教育学会、教育领域创作...
个人认证用户
关注
展开全部
百度云求不定积分与是积分的资源有没有啊?如果有给我发一下行吗谢谢。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询