证明:对于任意两个向量a,b都有||a|-|b||≤|a-b|≤|a|+|b|.

 我来答
阳秀珍左婉
2019-12-08 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.3万
采纳率:29%
帮助的人:687万
展开全部
设θ=<a,b>
先证左边:||a|-|b||≤|a-b|
由|a-b|²-||a|-|b||²=(a²-2|a||b|cosθ+b²)-(a²-2|a||b|+b²)=2|a||b|(1-cosθ)≥0
得|a-b|≥||a|-|b||
再证右边:|a-b|≤|a|+|b|
由|a-b|²-||a|+|b||²=(a²-2|a||b|cosθ+b²)-(a²+2|a||b|+b²)=
-2|a||b|(1+cosθ)≤0
得|a-b|≤|a|+|b|
综述可知:||a|-|b||≤|a-b|≤|a|+|b|
(注:你也可以用反证法一步一步推,推出的结论成立就行。)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式