神经网络学习样本越多,泛化能力越强?

 我来答
生活畅谈者
高能答主

2020-10-18 · 生活新鲜事,看我就知道
生活畅谈者
采纳数:418 获赞数:344762

向TA提问 私信TA
展开全部

是的。

构复杂性和样本复杂性:神经网络的容量以及规模称之为神经网络的结构复杂性,样本复杂性是训练某一固定结构神经网络所需的样本数目。

样本质量是训练样本分布反映总体分布的程度,或者说由整个训练样本集提供的信息量。样本质量可以强烈地影响神经网络的泛化能力,改进训练样本质量,也是改善神经网络泛化能力的一种重要方法。

扩展资料:

注意事项:

由于学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的,可采用变化的学习速率或自适应的学习速率加以改进。

BP算法可以使权值收敛到某个值,但并不保证其为误差平面的全局最小值,这是因为采用梯度下降法可能产生一个局部最小值。对于这个问题,可以采用附加动量法来解决。

参考资料来源:百度百科-神经网络结构

参考资料来源:人民网-DeepMind出IQ测试题 考考神经网络有多聪明

刑又槐0IN
2019-02-17 · TA获得超过5094个赞
知道大有可为答主
回答量:5688
采纳率:0%
帮助的人:593万
展开全部
这个没有明确要求,样本也不是越多越好。通常情况下,你的样本可以一部分用来做验证。加速你有100个样本,90%用来做训练,10%用来做验证等,当然,有时候还得留下10%做测试用。我个人的经验是,样本数尽量在10以上吧。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式