展开全部
因为原函数存在定理为:若f(x)在[a,b]上连续,则必存在原函数。此条件为充分条件,而非必要条件。即若f(x)存在原函数,不能推出f(x)在[a,b]上连续。由于初等函数在有定义的区间上都是连续的,故初等在其定义区间上都有原函数。
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
原函数存在与间断点的关系:
设F'(x)=f(x),f(x)在x=x0处不连续,则x0必为第二类间断点(对于考研数学,只能是第二类振荡间断点),而非第一类间断点或第二类无穷间断点。
当f(x)存在第二类振荡间断点时,不能确定是否存在原函数,这种情况下结论与f(x)的表达式有关。
原函数存在的三个结论:
如果f(x)连续,则一定存在原函数。如果f(x)不连续,有第一类可去、跳跃间断点或第二类无穷间断点,那么包含此间断点的区间内,一定不存在原函数。
如果f(x)不连续,有第二类振荡间断点,那么包含此间断点的区间内,原函数可能存在,也可能不存在。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询