为什么很多学生“害怕”数学这门课?
一个学生为什么要去爬高等数学这座大厦呢?或者换句话说,数学家凭什么要求所有普通人都按照悔和数学家的方式来学数学呢?它除了把学生摔得鼻青脸肿之外,没有任何用处。每个学生都不得不学会七八种判别一个级数是否收敛的技巧,但是他甚至没有机会得到一个简单问题的答案:「我为什么要学习级数?」察前橡——对数学家来说这个问题没有意义,数学家反正总是需要级数的。
但是它对别人有意义。每次当我走进课堂,开始讨论第一类反常积分和第二类反常积分或者绝对收敛和相对收敛的区别,我都忍不住设想台下学生们的心情。他们会不会觉得我像是个傻瓜?反正我觉得自败旁己很像。我常常碰到有人认真地问:「数学到底有什么用处?」这问题其实一点都不难回答,我可以随口举出无数个例子来说明为什么社会的每个角落都须臾不可缺少最现代的数学工具,但是我明白为什么别人会问这个问题。因为对于他们来说,数学就是他们在大学里学过的这些习题。而这些习题对 99% 的大学生来说确实一点用都没有,甚至连「锻炼逻辑思维能力」这种最虚幻的用处也谈不上。如果是我来编写大学数学教材,我会争取让每一个在大学里读过数学课的人都能回答这样的问题:为什么人们能精确预测几十年后的日食,却没法精确预测明天的天气;为什么人们可以通过 https 安全地浏览网页而不会被监听;为什么全球变暖的速度超过一个界限就变得不可逆了;为什么把文本文件压缩成 zip 体积会减少很多,而 mp3 文件压缩成 zip 大小却几乎不变;民生统计指标到底应该采用平均数还是中位数;当人们说两种乐器声音的音高相同而音色不同的时候到底是什么意思⋯⋯这不是什么「趣味数学」,这就是数学。基础、重要、深刻、美的数学。
任何一个接受过大学科学教育的人,无论他的职业是什么,他都应当能够明确理解下面这些事:为什么历史上一次又一次有过处于少数地位的业余科学家在不被重视的情况下做出重大贡献的事例,今天的科学界仍然在整体上排斥业余研究者的参与,并且反对社会资源被用来鼓励业余研究;既然科学结论有可能并且也在事实上曾经反复被推翻,连牛顿力学都会被爱因斯坦相对论所取代而相对论也可以继续被修正,当代科学家做出的科学断言到底在什么意义上值得相信(或者是不是根本就不值得相信)
科学问题是不是和政治问题一样,并不存在所谓正确的答案,而每种立场其实都有其存在的意义和价值;当一个科学上的激肆专业问题同时又具有政治上的巨大影响力的时候(比如全球变暖、干细胞研究或者转基因作物推明贺轿广),不具有专业背景的拍数公众到底应该具有怎样的发言权。让每个现代人在大学教育中听到科学家对这些问题的回答,应当是大学科学教育不可回避的任务。