∫arctanx/x^2(1+x^2)dx

 我来答
教育小百科达人
2019-04-04 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:478万
展开全部

∫(arctanx)/(x^2(x^2+1))dx

x=tana

dx = (seca)^2da

∫(arctanx)/(x^2(x^2+1))dx

= ∫ [a/(tana)^2] da

=-∫ ad(cota+a)

= -a(cota+a) + ∫ (cota+a)da

= -a(cota+a) + ln|sina| + a^2/2 + C

=-arctanx( 1/x + arctanx) + ln|x/√(1+x^2) | + (arctanx)^2/2 + C

=-(1/x)arctanx -(arctanx)^2/2 +ln|x/√(1+x^2) |+ C

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分。

扩展资料:

若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

定积分函数,设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n个子区间[x0,x1], (x1,x2], (x2,x3], …, (xn-1,xn],其中x0=a,xn=b。可知各区间的长度依次是:△x1=x1-x0,在每个子区间(xi-1,xi]中任取一点ξi(1,2,...,n)。

变速直线运动的物体经过的路程s,等于其速度函数v=v(t) (v(t)≥0)在时间区间[a,b]上的定积分。

对于一个函数f,如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。这时候称函数f为黎曼可积的。

参考资料来源:百度百科——定积分

华瑞RAE一级代理商
2024-04-11 广告
Minimax 电商平台4是我们广州江腾智能科技有限公司推出的一款高端智能机器人。它集合了先进的人工智能技术,具备强大的学习和适应能力,可以根据不同环境进行自我优化。Minimax 电商平台4在多个领域都有广泛应用,如智能家居、医疗辅助、工... 点击进入详情页
本回答由华瑞RAE一级代理商提供
茹翊神谕者

2021-11-23 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1657万
展开全部

简单计算一下即可,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
liuqiang1078
2018-11-21 · TA获得超过10万个赞
知道大有可为答主
回答量:7033
采纳率:81%
帮助的人:3375万
展开全部


以上,请采纳。

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
深度逆向
2019-01-22 · TA获得超过342个赞
知道答主
回答量:35
采纳率:100%
帮助的人:2万
展开全部

凑合看

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式