大一高数不定积分问题
展开全部
∫ xe^x/(1 + x)^2 dx
= ∫ [e^x(1 + x) - e^x]/(1 + x)^2 dx
= ∫ e^x/(1 + x) dx - ∫ e^x/(1 + x)^2 dx
= ∫ e^x/(1 + x) dx - ∫ e^x d[- 1/(1 + x)]
= ∫ e^x/(1 + x) dx + e^x/(1 + x) - ∫ 1/(1 + x) d(e^x)、分部积分
= ∫ e^x/(1 + x) dx + e^x/(1 + x) - ∫ e^x/(1 + x) dx
= e^x/(1 + x) + C
= ∫ [e^x(1 + x) - e^x]/(1 + x)^2 dx
= ∫ e^x/(1 + x) dx - ∫ e^x/(1 + x)^2 dx
= ∫ e^x/(1 + x) dx - ∫ e^x d[- 1/(1 + x)]
= ∫ e^x/(1 + x) dx + e^x/(1 + x) - ∫ 1/(1 + x) d(e^x)、分部积分
= ∫ e^x/(1 + x) dx + e^x/(1 + x) - ∫ e^x/(1 + x) dx
= e^x/(1 + x) + C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
= ∫ [e^x(1 + x) - e^x]/(1 + x)^2 dx
= ∫ e^x/(1 + x) dx - ∫ e^x/(1 + x)^2 dx
= ∫ e^x/(1 + x) dx - ∫ e^x d[- 1/(1 + x)]
= ∫ e^x/(1 + x) dx + e^x/(1 + x) - ∫ 1/(1 + x) d(e^x)
= ∫ e^x/(1 + x) dx + e^x/(1 + x) - ∫ e^x/(1 + x) dx
= e^x/(1 + x) + C
= ∫ e^x/(1 + x) dx - ∫ e^x/(1 + x)^2 dx
= ∫ e^x/(1 + x) dx - ∫ e^x d[- 1/(1 + x)]
= ∫ e^x/(1 + x) dx + e^x/(1 + x) - ∫ 1/(1 + x) d(e^x)
= ∫ e^x/(1 + x) dx + e^x/(1 + x) - ∫ e^x/(1 + x) dx
= e^x/(1 + x) + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询