7个回答
展开全部
f(sinx) = 1+cosx = 1±√[1-(sinx)^2], f(u) = 1±√(1-u^2)
f[cos(x/2)] = 1±√{1-[cos(x/2)]^2} = 1 ± [±sin(x/2)]
将平面分为 8 个区域, 讨论两处正负号的取舍。记 k 为整数
(1) 当 2kπ ≤ x/2 ≤ (2k+1/4)π, 则 4kπ ≤ x ≤ (4k+1/2)π ,
cosx ≥ 0, sin(x/2) ≥ 0, f[cos(x/2)] = 1 + sin(x/2);
(2) 当 (2k+1/4)π ≤ x/2 ≤ (2k+1/2)π, 则 (4k+1/2)π ≤ x ≤ (4k+1)π ,
cosx ≤ 0, sin(x/2) ≥ 0, f[cos(x/2)] = 1 - sin(x/2);
(3) 当 (2k+1/2)π ≤ x/2 ≤ (2k+3/4)π, 则 (4k+1)π ≤ x ≤ (4k+3/2)π ,
cosx ≤ 0, sin(x/2) ≥ 0, f[cos(x/2)] = 1 - sin(x/2);
(4) 当 (2k+3/4)π ≤ x/2 ≤ (2k+1)π, 则 (4k+3/2)π ≤ x ≤ (4k+2)π ,
cosx ≥ 0, sin(x/2) ≥ 0, f[cos(x/2)] = 1 + sin(x/2);
(5) 当 (2k+1)π ≤ x/2 ≤ (2k+5/4)π, 则 (4k+2)π ≤ x ≤ (4k+5/2)π ,
cosx ≥ 0, sin(x/2) ≤ 0, f[cos(x/2)] = 1 - sin(x/2);
(6) 当 (2k+5/4)π ≤ x/2 ≤ (2k+3/2)π, 则 (4k+5/2)π ≤ x ≤ (4k+3)π ,
cosx ≤ 0, sin(x/2) ≤ 0, f[cos(x/2)] = 1 + sin(x/2);
(7) 当 (2k+3/2)π ≤ x/2 ≤ (2k+7/4)π, 则 (4k+3)π ≤ x ≤ (4k+7/2)π ,
cosx ≤ 0, sin(x/2) ≤ 0, f[cos(x/2)] = 1 + sin(x/2);
(8) 当 (2k+7/4)π ≤ x/2 ≤ (2k+2)π, 则 (4k+7/2)π ≤ x ≤ (4k+4)π ,
cosx ≥ 0, sin(x/2) ≤ 0, f[cos(x/2)] = 1 - sin(x/2).
综上:
f[cos(x/2)] = 1 + sin(x/2),4kπ ≤ x ≤ (4k+1/2)π,(4k+3/2)π ≤ x ≤ (4k+5/2)π, (4k+3)π ≤ x ≤ (4k+7/2)π ;
f[cos(x/2)] = 1 - sin(x/2),(4k+1/2)π ≤ x ≤ (4k+3/2)π,(4k+2)π ≤ x ≤ (4k+5/2)π ,(4k+7/2)π ≤ x ≤ (4k+4)π。
f[cos(x/2)] = 1±√{1-[cos(x/2)]^2} = 1 ± [±sin(x/2)]
将平面分为 8 个区域, 讨论两处正负号的取舍。记 k 为整数
(1) 当 2kπ ≤ x/2 ≤ (2k+1/4)π, 则 4kπ ≤ x ≤ (4k+1/2)π ,
cosx ≥ 0, sin(x/2) ≥ 0, f[cos(x/2)] = 1 + sin(x/2);
(2) 当 (2k+1/4)π ≤ x/2 ≤ (2k+1/2)π, 则 (4k+1/2)π ≤ x ≤ (4k+1)π ,
cosx ≤ 0, sin(x/2) ≥ 0, f[cos(x/2)] = 1 - sin(x/2);
(3) 当 (2k+1/2)π ≤ x/2 ≤ (2k+3/4)π, 则 (4k+1)π ≤ x ≤ (4k+3/2)π ,
cosx ≤ 0, sin(x/2) ≥ 0, f[cos(x/2)] = 1 - sin(x/2);
(4) 当 (2k+3/4)π ≤ x/2 ≤ (2k+1)π, 则 (4k+3/2)π ≤ x ≤ (4k+2)π ,
cosx ≥ 0, sin(x/2) ≥ 0, f[cos(x/2)] = 1 + sin(x/2);
(5) 当 (2k+1)π ≤ x/2 ≤ (2k+5/4)π, 则 (4k+2)π ≤ x ≤ (4k+5/2)π ,
cosx ≥ 0, sin(x/2) ≤ 0, f[cos(x/2)] = 1 - sin(x/2);
(6) 当 (2k+5/4)π ≤ x/2 ≤ (2k+3/2)π, 则 (4k+5/2)π ≤ x ≤ (4k+3)π ,
cosx ≤ 0, sin(x/2) ≤ 0, f[cos(x/2)] = 1 + sin(x/2);
(7) 当 (2k+3/2)π ≤ x/2 ≤ (2k+7/4)π, 则 (4k+3)π ≤ x ≤ (4k+7/2)π ,
cosx ≤ 0, sin(x/2) ≤ 0, f[cos(x/2)] = 1 + sin(x/2);
(8) 当 (2k+7/4)π ≤ x/2 ≤ (2k+2)π, 则 (4k+7/2)π ≤ x ≤ (4k+4)π ,
cosx ≥ 0, sin(x/2) ≤ 0, f[cos(x/2)] = 1 - sin(x/2).
综上:
f[cos(x/2)] = 1 + sin(x/2),4kπ ≤ x ≤ (4k+1/2)π,(4k+3/2)π ≤ x ≤ (4k+5/2)π, (4k+3)π ≤ x ≤ (4k+7/2)π ;
f[cos(x/2)] = 1 - sin(x/2),(4k+1/2)π ≤ x ≤ (4k+3/2)π,(4k+2)π ≤ x ≤ (4k+5/2)π ,(4k+7/2)π ≤ x ≤ (4k+4)π。
展开全部
判断函数的奇偶性,只能用定义,就是f(-x)=f(x)为偶函数f(-x)=-f(x)为奇函数,去求f(-x)看看他和哪一个是相等的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不知到啊。高中的??
追问
大一高数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询