
求下列极限?
1个回答
2019-12-22 · 知道合伙人教育行家
关注

展开全部
(7)
(0至1)∫ 1/(x²+1) dx = arctanx|(0至1) = arctan1-arctan0 = π/4
==================
(9)
(0至2)∫ |1-x| dx = (0至1)∫ (1-x) dx + (1至2)∫ (x-1) dx
= [x-(1/2)x²](0至1)+ [ (1/2)x²-x ](1至2)
= [1-1/2] + [(2-2)-(1/2-1)] = 1/2+1/2 = 1
==========================================
8
(1)
(x→0) lim { [(0至x) ∫ te^t²dt]/sin²x}
= (x→0) lim { [(0至x) ∫ (1/2)e^t²dt²]/sin²x}
= (x→0) lim { [(1/2)(e^x²-e^0)]/sin²x}
= (x→0) lim { [e^x²-1] / [2sin²x] }
罗必塔
= (x→0) lim { [2xe^x²] / [4sinxcosx] }
= (x→0) lim { [e^x²] / [2cosx] }
= e^0 / 2 = 1/2
(0至1)∫ 1/(x²+1) dx = arctanx|(0至1) = arctan1-arctan0 = π/4
==================
(9)
(0至2)∫ |1-x| dx = (0至1)∫ (1-x) dx + (1至2)∫ (x-1) dx
= [x-(1/2)x²](0至1)+ [ (1/2)x²-x ](1至2)
= [1-1/2] + [(2-2)-(1/2-1)] = 1/2+1/2 = 1
==========================================
8
(1)
(x→0) lim { [(0至x) ∫ te^t²dt]/sin²x}
= (x→0) lim { [(0至x) ∫ (1/2)e^t²dt²]/sin²x}
= (x→0) lim { [(1/2)(e^x²-e^0)]/sin²x}
= (x→0) lim { [e^x²-1] / [2sin²x] }
罗必塔
= (x→0) lim { [2xe^x²] / [4sinxcosx] }
= (x→0) lim { [e^x²] / [2cosx] }
= e^0 / 2 = 1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |