求一道高数题19.
3个回答
展开全部
该微分方程属于缺 x 型,即缺自变量型。
设 y' = p 则 y'' = dp/dx = (dp/dy)(dy/dx) = pdp/dy
微分方程化为 pdp/dy = (3/2)y^2, 即 2pdp = 3y^2dy
p^2 = y^3 + C1, y(0) = 1, y'(0) = 1 代入 得 C1= 0
p = ±y^(3/2) = dy/dx, ±dx = dy/y^(3/2),
±x + C2 = -2/√y, y(0) = 1 代入 得 C2 = -2
特解 √y (2±x) = 2
设 y' = p 则 y'' = dp/dx = (dp/dy)(dy/dx) = pdp/dy
微分方程化为 pdp/dy = (3/2)y^2, 即 2pdp = 3y^2dy
p^2 = y^3 + C1, y(0) = 1, y'(0) = 1 代入 得 C1= 0
p = ±y^(3/2) = dy/dx, ±dx = dy/y^(3/2),
±x + C2 = -2/√y, y(0) = 1 代入 得 C2 = -2
特解 √y (2±x) = 2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询