求锥面z=根号下x^2+y^2、圆柱面x^2+y^2=1及平面z=0所围立体体积。求解,高等数学

 我来答
夷傅香齐申
2019-08-07 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.3万
采纳率:27%
帮助的人:860万
展开全部
两个办法:一个是用积分,一个是用立体角
①用积分
用球面坐标,设半径r与z轴夹角为φ,r在xoy平面上投影与x轴夹角为θ
则积分区域为:0≤r≤1,0≤φ≤π/4,0≤θ≤2π
两曲面所围成立体体积为
v=∫dv=∫∫∫dxdydz=∫∫∫r²sinφdrdφdθ
=∫r²dr*∫sinφdφ*∫dθ
=1/3*[-cosφ]*2π
=2π/3*(1-√2/2)
②用立体角
圆锥z=√(x²+y²)顶角为π/2
半球z=√[1-(x²+y²)]为单位球,半径为1
顶角为2θ的圆锥的立体角为一个单位球的球冠,即ω=2π(1-cosθ)
∴上述圆锥的立体角为ω=2π[1-cos(π/4)]=2π(1-√2/2)
半球立体角为2π,体积为2πr³/3=2π/3
圆锥立体角为2π(1-√2/2),体积为v
锥体体积与对应立体角成正比,则有
v/(2π/3)=[2π(1-√2/2)]/(2π)
解得
v=2π/3*(1-√2/2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式