二次函数的三种形式是什么?
(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0),则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a)
(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0).
(3)交点式(与x轴):y=a(x-x1)(x-x2)(又叫两点式,两根式等)
扩展资料:
二次函数的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次, 二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。
如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。
一般地,把形如 (a、b、c是常数)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。
顶点坐标 交点式为 (仅限于与x轴有交点的抛物线),与x轴的交点坐标是 和 。
注意:
“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在一定范围内任意取值。
在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别。
参考资料:百度百科-二次函数
第二种方法叫顶点式,标准形式为y=a(x-h)^2+c,已知一个顶点和另一点时用.
顶点式求法举例:一个二次函数顶点为(3,5),且过(4,0),求其解析式.
设该函数关系式为y=a(x-h)^2+c,顶点(3,5),过点(4,0),则h=3,c=5,代入x=4,y=0即可求出a的值,于是就能求出其解析式.
注:如果你还是不明白,可以采用以下方法:因为该函数顶点(3,5),所以该函数对称轴为x=3,那么函数必过(4,0)的对称点(2,0),于是就有了3个点,即可用一般式求解.
第三个方法叫交点式,标准形式为y=a(x+m)(x+n),当题目中有函数与x轴的两个交点和另一点时用,举例如下:一个二次函数过(4,0),(-1,0)和(0,3),求其解析式.
设该函数关系式为y=a(x+m)(x+n)过(4,0),(-1,0)和(0,3),当x=4时y为0,那么(x+m)或(x+n)中必有一个为0,设它是(x+m)那么m=-4.同理,n=1.于是原函数解析式为y=a(x-4)(x+1),代入x=0,y=3即可求解.
注:交点式时可以用一般式求,但麻烦些.
顶点式:运用配方,加上一次项系数一半的平方,再减去一次项系数一半的平方,然后运用完全平方式得到:y=a(x-b/2a)+(4ac-b⒉)/4a
两根式:如果一个函数的值为0,也就是y=0,那么x1,x2就是函数的零点,如果1个方程的2跟已知,那么因式分解的结果一定是(x-x1)(x-x2)=0,比如一个方程2跟为2,3,那么分解出来的就是(x-2)(x-3)=0,那么乘以系数a,就是函数图象了,y=a(x-x1)(x-x2)
y=ax+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,(4ac-b)^2/4a)
;
顶点式
y=a(x-h)^2+k(a≠0,a、h、k为常数),顶点坐标为(h,k)对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax²;的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;
交点式
y=a(x-x1)(x-x2)
(a≠0)
[仅限于与x轴即y=0有交点A(x1,0)和
B(x2,0)的抛物线,即b2-4ac≥0]
;
y=ax+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,(4ac-b)^2/4a)
;
顶点式
y=a(x-h)^2+k(a≠0,a、h、k为常数),顶点坐标为(h,k)对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax²;的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;
交点式
y=a(x-x1)(x-x2)
(a≠0)
[仅限于与x轴即y=0有交点A(x1,0)和
B(x2,0)的抛物线,即b2-4ac≥0]
;