伯努利方程y'+2y/x=x^2y^4/3的解为
先求基本解
y'+2y/x=0
根据变量分离得
dy/2y=-dx/x
得y=c/x^2
形如y'+P(x)y=Q(x)y^n的微分方程,称为伯努利微分方程,其中n≠0并且n≠1,其中P(x),Q(x)为已知函数,因为当n=0,1时该方程是线性微分方程。
微分方程约束条件
微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。
常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。
若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。
偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。
以上内容参考 百度百科—伯努利微分方程
先求基本解
y'+2y/x=0
根据变量分离得
dy/2y=-dx/x
得y=c/x^2
伯努利微分方程是形如y'+P(x)y=Q(x)y^n的微分方程,其中n≠0并且n≠1,其中P(x),Q(x)为已知函数,因为当n=0,1时该方程是线性微分方程。
扩展资料:
形如y'+P(x)y=Q(x)y^n的微分方程,称为伯努利微分方程,其中n≠0并且n≠1,其中P(x),Q(x)为已知函数,因为当n=0,1时该方程是线性微分方程。它以雅各布·伯努利(Jacob Bernoulli)命名,他在1695年进行了研究。
伯努利方程是特殊的,因为它们是具有已知精确解的非线性微分方程。 伯努利方程的著名特殊情况是逻辑微分方程。
则原式可化为
z'+xz=-x³z²
此即为伯努利方程
设p=1/z
代入可得
p'-xp=x³
根据公式法求解即可