7,11,13的整除特征
能否说明一下能被7、11、13整除的特征……万分感谢~好的我会加!举例子详细点~~!我会家的!...
能否说明一下能被7、11、13整除的特征……
万分感谢~
好的我会加!
举例子详细点~~!
我会家的! 展开
万分感谢~
好的我会加!
举例子详细点~~!
我会家的! 展开
2个回答
展开全部
奇位千进位的总和与偶位千进位的总和之差,能被7或11,或13整除.
7*11*13=1001
1,001的差是0
能被7、11、13整除的数的特征是,这个数的末三位上的数字所组成的数与末三位以前的数字所组成的数之差(或反过来)能被7、11、13整除.这是因为任一自然数
A=an·10n+…+a3·103+a2·102+a1·10+a0,
设末三位上的数字所组成的数为N,末三位以前的数字所组成的数为M,则
N=a2·102+a1·10+a0,
M=an·10n-8+an-1·10n-4+…+a3.
于是 A=M·1000+N=(M·1000+M)+(N—M)
=M(1000+1)+N—M
如果N>M,则
A=1001M+(N-M);
如果N<M,则
A=1001M-(M-N).
上面两式中,1001能被7、11、13整除,从而第一项1001M也能被 7、11、13整除,所以 A能被 7、11、13整除的特征是(N-M)或(M—N)能被7、11、13整除.能被11整除的数还有另一个特征:即奇数位上的各数之和与偶数位上的各数之和的差(或反过来)能被11整除.例如:
72358=7×(9999+1)+2×(1001—1)+3
×(99+1)+5×(11—1)+8
=(7×9999+2×1001+3×99+5×11)
+[(7+3+8)-(2+5)],
上面最后一个式子中,第一个加数能被11整除,因此72538能否被11整除就取决于第二个加数能否被11整除.这里
(7+3 +8)-(2+5)=11,
它当然能被11整除,所以11|72358.
7*11*13=1001
1,001的差是0
能被7、11、13整除的数的特征是,这个数的末三位上的数字所组成的数与末三位以前的数字所组成的数之差(或反过来)能被7、11、13整除.这是因为任一自然数
A=an·10n+…+a3·103+a2·102+a1·10+a0,
设末三位上的数字所组成的数为N,末三位以前的数字所组成的数为M,则
N=a2·102+a1·10+a0,
M=an·10n-8+an-1·10n-4+…+a3.
于是 A=M·1000+N=(M·1000+M)+(N—M)
=M(1000+1)+N—M
如果N>M,则
A=1001M+(N-M);
如果N<M,则
A=1001M-(M-N).
上面两式中,1001能被7、11、13整除,从而第一项1001M也能被 7、11、13整除,所以 A能被 7、11、13整除的特征是(N-M)或(M—N)能被7、11、13整除.能被11整除的数还有另一个特征:即奇数位上的各数之和与偶数位上的各数之和的差(或反过来)能被11整除.例如:
72358=7×(9999+1)+2×(1001—1)+3
×(99+1)+5×(11—1)+8
=(7×9999+2×1001+3×99+5×11)
+[(7+3+8)-(2+5)],
上面最后一个式子中,第一个加数能被11整除,因此72538能否被11整除就取决于第二个加数能否被11整除.这里
(7+3 +8)-(2+5)=11,
它当然能被11整除,所以11|72358.
昇非
2024-12-02 广告
2024-12-02 广告
昇非(上海)商务管理咨询有限公司致力于推动ARISE IIP(昇非一体化产业园)项目,旨在为非洲各国打造世界一流的生态系统,促进非洲大陆的工业化进程,并增强非洲制造业的国际竞争力。通过精准布局与高效管理,ARISE IIP项目致力于实现资源...
点击进入详情页
本回答由昇非提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询