计算定积分:上限1/2 下限0 根号(1-x^2)dx
展开全部
答案为√3/8+π/12
解题过程如下:
令x=sinΘ
dx=cosΘdΘ
x=1/2,Θ=π/6
x=0,Θ=0
原式=∫(π/6,0)cosΘ*cosΘdΘ
=∫(π/6,0)(1+cos2Θ)/2*1/2d(2Θ)
=1/4*(sin2Θ+2Θ)|(π/6,0)
=√3/8+π/12
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。
这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!
扩展资料
定理
一般定理
定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
牛顿-莱布尼茨公式
定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。
解题过程如下:
令x=sinΘ
dx=cosΘdΘ
x=1/2,Θ=π/6
x=0,Θ=0
原式=∫(π/6,0)cosΘ*cosΘdΘ
=∫(π/6,0)(1+cos2Θ)/2*1/2d(2Θ)
=1/4*(sin2Θ+2Θ)|(π/6,0)
=√3/8+π/12
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。
这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!
扩展资料
定理
一般定理
定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
牛顿-莱布尼茨公式
定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
整定计算怎么样?这个问题不能一概而论,要根据您的具体情况进行分析。这里简单介绍一下整定计算的特点,供您参考。①整定计算要决定保护的配置与使用,它直接关系到确保系统安全和对重要用户连续供电的问题,同时又和电网的经济指标,运行调度,调试维护等多...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
展开全部
令x=sinΘ
dx=cosΘdΘ
x=1/2,Θ=π/6
x=0,Θ=0
原式=∫(π/6,0)cosΘ*cosΘdΘ
=∫(π/6,0)(1+cos2Θ)/2*1/2d(2Θ)
=1/4*(sin2Θ+2Θ)|(π/6,0)
=√3/8+π/12
扩展资料:
根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
dx=cosΘdΘ
x=1/2,Θ=π/6
x=0,Θ=0
原式=∫(π/6,0)cosΘ*cosΘdΘ
=∫(π/6,0)(1+cos2Θ)/2*1/2d(2Θ)
=1/4*(sin2Θ+2Θ)|(π/6,0)
=√3/8+π/12
扩展资料:
根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令x=sinΘ
dx=cosΘdΘ
x=1/2,Θ=π/6
x=0,Θ=0
原式=∫(π/6,0)cosΘ*cosΘdΘ
=∫(π/6,0)(1+cos2Θ)/2*1/2d(2Θ)
=1/4*(sin2Θ+2Θ)|(π/6,0)
=√3/8+π/12
很高兴为您解答,祝你学习进步!【学习宝典】团队为您答题。
有不明白的可以追问!如果您认可我的回答。
请点击下面的【选为满意回答】按钮,谢谢!
dx=cosΘdΘ
x=1/2,Θ=π/6
x=0,Θ=0
原式=∫(π/6,0)cosΘ*cosΘdΘ
=∫(π/6,0)(1+cos2Θ)/2*1/2d(2Θ)
=1/4*(sin2Θ+2Θ)|(π/6,0)
=√3/8+π/12
很高兴为您解答,祝你学习进步!【学习宝典】团队为您答题。
有不明白的可以追问!如果您认可我的回答。
请点击下面的【选为满意回答】按钮,谢谢!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询