若函数f(x)=e^-(m-x)^2(e是自然对数的底数)的最大值为m,则函数f(x)的递增区间为

奇迹之引导者
2010-07-27 · TA获得超过6814个赞
知道小有建树答主
回答量:653
采纳率:50%
帮助的人:458万
展开全部
确认一下,这个函数是以e为底,以-(m-x)²为指数的函数吧?
如果是的话,那么:
f(x)=e^(-m²+2mx-x²)
则f'(x)=e^(-m²+2mx-x²)*(2m-2x)
由于e^(-m²+2mx-x²)不等于0,那么令f'(x)=0,则x=m
即f(m)是函数的极值点
当x≤m时,函数单调递增
当x>m时,函数单调递减
因此f(m)是函数的极大值
而该函数只有一个极值点,所以它又是函数的最大值
故f(x)的单调递增区间为:(-∞,m]
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式