【数学】有关平方和的最值不等式
现在有这样一组数a(i)满足a(1)+a(2)+a(3)+...+a(n)=S,是常数a数组的值随便取值只要大于0就好n不止2,3,可以取很大。现在想求平方和a(1)^2...
现在有这样一组数a(i)满足
a(1)+a(2)+a(3)+...+a(n)=S,
是常数 a数组的值随便取值只要大于0就好
n不止2,3,可以取很大。
现在想求平方和
a(1)^2+a(2)^2+a(3)^2+...+a(n)^2的最小值,该怎么算呢?
想了想应该是a(i)=S/n时候,平方和最小,但如何证明呢?
谢谢了!! 展开
a(1)+a(2)+a(3)+...+a(n)=S,
是常数 a数组的值随便取值只要大于0就好
n不止2,3,可以取很大。
现在想求平方和
a(1)^2+a(2)^2+a(3)^2+...+a(n)^2的最小值,该怎么算呢?
想了想应该是a(i)=S/n时候,平方和最小,但如何证明呢?
谢谢了!! 展开
1个回答
展开全部
可以用方均根平均数大于等于算数平均数这个不等式:
√[(a1^2+a2^2+...+an^2)/n]>=(a1+a2+...+an)/n
参考百科词条【均值不等式】:http://baike.baidu.com/view/441784.htm?fr=ala0_1_1
用这个不等式,我们有:√[[a(1)^2+a(2)^2+a(3)^2+...+a(n)^2]/n]>=[a(1)+a(2)+a(3)+...+a(n)]/n=S/n
上式整理得a(1)^2+a(2)^2+a(3)^2+...+a(n)^2>=S^2/n
由均值不等式等号成立条件为a(1)=a(2)=a(3)=...=a(n),所以显然是a(i)=S/n时最小。
√[(a1^2+a2^2+...+an^2)/n]>=(a1+a2+...+an)/n
参考百科词条【均值不等式】:http://baike.baidu.com/view/441784.htm?fr=ala0_1_1
用这个不等式,我们有:√[[a(1)^2+a(2)^2+a(3)^2+...+a(n)^2]/n]>=[a(1)+a(2)+a(3)+...+a(n)]/n=S/n
上式整理得a(1)^2+a(2)^2+a(3)^2+...+a(n)^2>=S^2/n
由均值不等式等号成立条件为a(1)=a(2)=a(3)=...=a(n),所以显然是a(i)=S/n时最小。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询