导数的基本公式与运算法则

 我来答
官诗槐臧风
2019-01-16 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:32%
帮助的人:941万
展开全部
y=f(x)=c
(c为常数),则f'(x)=0
f(x)=x^n
(n不等于0)
f'(x)=nx^(n-1)
(x^n表示x的n次方)
f(x)=sinx
f'(x)=cosx
f(x)=cosx
f'(x)=-sinx
f(x)=a^x
f'(x)=a^xlna(a>0且a不等于1,x>0)
f(x)=e^x
f'(x)=e^x
f(x)=logaX
f'(x)=1/xlna
(a>0且a不等于1,x>0)
f(x)=lnx
f'(x)=1/x
(x>0)
f(x)=tanx
f'(x)=1/cos^2
x
f(x)=cotx
f'(x)=-
1/sin^2
x
导数运算法则如下
(f(x)+/-g(x))'=f'(x)+/-
g'(x)
(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
(g(x)/f(x))'=(f(x)'g(x)-g(x)f'(x))/(f(x))^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
漆妙之司闳
2020-05-20 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:34%
帮助的人:756万
展开全部
1、基本导数公式:
(1)
(c为常数);
(2)
(a为任意实数);
(3)
,特例:

(4)
特例:
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
对导数基本公式的记忆要准确熟练,它是求导数的基础,并由它们可推导出微分公式和积分公式,公式中带“余”字的三角函数、反三角函数均有负号。
2、导数的四则运算法则。若u(x)和v(x)在某区域内的导数均存在,则有:
(1)
(c为常数)
(2)
(3)
(4)
3、复合函数求导法则,若函数y=f(u)及u=
均可导,则
即复合函数的导数等于复合函数对中间变量的导数乘以中间变量对自变量的导数。
法则适用于有限次复合的函数。
4、隐函数求导法则。若y=f(x)是由方程F(x.,y)=0确定的可导函数,则其导数
可由方程
求得,即隐函数求导法则是:把方程两边对x求导,注意y是x的函数,然后从求导后得到的等式中解出

5、对数求导法则。若u(x)、v(u)分别可导,则幂指函数y=u
可用对数求导法求出。对数求导法则是:先将函数两边取对数,然后化成隐函数求导数,它适用于幂指函数和含有多个因子等较复杂的函数。
6、高阶导数。函数y=f(x)的导数一般仍是x的函数,它的导数
称为此函数的二阶导数,记为
,或
,即

一般地,函数y=f(x)的n-1阶
导(函)数的导数称为f(x)的n阶导数,即
[
(n=2,3,4,…)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式