数列求和:1平方+3平方+5平方+……+(2n-1)平方
1个回答
展开全部
已知:1^2+2^2+3^2+……+n^2
=n(n+1)(2n+1)/6
—①
那么1^2+2^2+3^2+……+n^2+……+(2n+1)^2
=(2n+1)(n+1)(4n+3)/3
—②
又有2^2+4^2+6^2+……+(2n)^2
=4[1^2+2^2+3^2+……+n^2]=4*①=2n(n+1)(2n+1)/3
—③
设所求为S
比较②和③可知
S
=
②-③
=
(2n+1)(n+1)(4n+3)/3-2n(n+1)(2n+1)/3
=
(2n+1)(n+1)(2n+3)/3
—④
因为S是n+1项的和
把它一般化
则奇数项平方和一般公式Sn=n(2n-1)(2n+1)/3
=n(n+1)(2n+1)/6
—①
那么1^2+2^2+3^2+……+n^2+……+(2n+1)^2
=(2n+1)(n+1)(4n+3)/3
—②
又有2^2+4^2+6^2+……+(2n)^2
=4[1^2+2^2+3^2+……+n^2]=4*①=2n(n+1)(2n+1)/3
—③
设所求为S
比较②和③可知
S
=
②-③
=
(2n+1)(n+1)(4n+3)/3-2n(n+1)(2n+1)/3
=
(2n+1)(n+1)(2n+3)/3
—④
因为S是n+1项的和
把它一般化
则奇数项平方和一般公式Sn=n(2n-1)(2n+1)/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询