高中物理公式知识点总结
4个回答
展开全部
一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt^2-Vo^2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo^2+Vt^2)/2]^(1/2) 6.位移s=V平t=Vot+1/2at=Vt/2t 7.加速度a=(Vt-Vo)/t (以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0) 8.实验用推论Δs=aT^2 (Δs为连续相邻相等时间(T)内位移之差) 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 3)竖直上抛运动 1.位移s=Vot-(gt^2)/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hmax=Vo^2/2g(从抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 4)竖直下抛运动 设初速度(即抛出速度)为Vo,因为a=g,取竖直向下的方向为正方向,则 Vt=Vo+gt S=Vot+0.5gt^2 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt^2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=根号(Vx^2+Vy^2)=根号[Vo^2+(gt)^2] (合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 ) 7.合位移:s=根号(x^2+y^2) (位移方向与水平夹角α:tgα=y/x=gt/2Vo ) 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)θ与β的关系为tgβ=2tgα; (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。 2)匀速圆周运动 1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf =V/r 3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr 7.角速度与转速的关系ω=2πn(此处频率与转速意义相同) 8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。 注: (1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心; (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。 3)万有引力 1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 2.万有引力定律:F=G(m1m2)/r^2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上) 3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=根号(GM/r);ω=根号(GM/r3);T=根号((4π^2r^3)/GM){M:中心天体质量} 5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径} 注: (1)天体运动所需的向心力由万有引力提供,F向=F万; (2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反); (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
[编辑本段]力
三、力(常见的力、力的合成与分解) 1)常见的力 1.重力G=mg (方向竖直向下,g=9.8N/Kg≈10N/Kg,作用点在重心,适用于地球表面附近) 2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)} 3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)} 4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力) 5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上) 6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上) 7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同) 8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0) 9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0) 10.浮力F=ρgV(ρ为液体密度,V为排开液体的体积) 11.液体压强P=ρgh(ρ为 液体密度,g=9.8N/Kg≈10N/Kg,h为测量点到液体自由面的深度) 注: (1)劲度系数k由弹簧自身决定; (2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定; (3)fm略大于μFN,一般视为fm≈μFN; (4)其它相关内容:静摩擦力(大小、方向)〔见第一册P7〕; (5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C); (6)安培力与洛仑兹力方向均用左手定则判定。 2)力的合成与分解 1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。 四、动力学(运动和力) 1.牛顿第一定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理} 5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重} 6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P57〕 注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
[编辑本段]振动和波
五、振动和波(机械振动与机械振动的传播) 1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向} 2.单摆周期T=2π√(l/g){l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r} 3.受振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身; (2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处; (3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式; (4)干涉与衍射是波特有的; (5)振动图象与波动图象; (6)其它相关内容:超声波及其应用〔见第二册P62〕/振动中的能量转化〔见第一册P63〕。
[编辑本段]冲量与动量
六、冲量与动量(物体的受力与动量的变化) 1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同} 3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定} 4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式} 5.动量守恒定律:p前总=p后总或p=p'′也可以是m1v1+m2v2=m1v1′+m2v2′ 6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒} 7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能} 8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体} 9.物体m1以v1初速度与静止的物体m2发生弹性正碰: v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2) 10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒) 11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失 E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移} 注: (1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上; (2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算; (3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等); (4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒; (5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。
[编辑本段]功和能
七、功和能(功是能量转化的量度) 1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角} 2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)} 3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb} 4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)} 5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)} 6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率} 7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f) 8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)} 9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)} 10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt 11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)} 12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)} 13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)} 14.动能定理(对物体做正功,物体的动能增加): W合=mvt2/2-mvo2/2或W合=ΔEK {W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)} 15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2 16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP 注: (1)功率大小表示做功快慢,做功多少表示能量转化多少; (2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功); (3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少 (4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
[编辑本段]分子动理论、能量守恒定律
八、分子动理论、能量守恒定律 1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力(1)r<r0,f引<f斥,F分子力表现为斥力 (2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值) (3)r>r0,f引>f斥,F分子力表现为引力 (4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的), W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕} 7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)} 注: (1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈; (2)温度是分子平均动能的标志; 3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; (4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小; (5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0 (6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; (7)r0为分子处于平衡状态时,分子间的距离; (8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。
[编辑本段]气体的性质
九、气体的性质 1.气体的状态参量: 温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志, 热力学温度与摄氏温度关系:T=t+273k {T:热力学温度(K),t:摄氏温度(℃)} 体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL 压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76Hg(1Pa=1N/m2) 2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大 3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度} 公式: F=PS 【S:受力面积,两物体接触的公共部分;单位:米2。】 1个标准大气压=76厘米水银柱高=1.01×105帕=10.336米水柱高 液面到液体某点的竖直高度。] 公式:P=ρgh h:单位:米; ρ:千克/米3; g=9.8牛/千克 (N/Kg) 2.阿基米德原理:浸在液体里的物体受到向上的浮力,浮力大小等于物体排开液体所受重力。 即F浮=G液排=ρ液gV排。 (V排表示物体排开液体的体积) 3.浮力计算公式:F浮=G-T=ρ液gV排=F上、下压力差 4.当物体漂浮时:F浮=G物 且 ρ物<ρ液 当物体悬浮时:F浮=G物 且 ρ物=ρ液 当物体上浮时:F浮>G物 且 ρ物<ρ液 当物体下沉时:F浮<G物 且 ρ物>ρ液 ⒈杠杆平衡条件:F1l1=F2l2。力臂:从支点到力的作用线的垂直距离 通过调节杠杆两端螺母使杠杆处于水位置的目的:便于直接测定动力臂和阻力臂的长度。 定滑轮:相当于等臂杠杆,不能省力,但能改变用力的方向。 动滑轮:相当于动力臂是阻力臂2倍的杠杆,能省一半力,但不能改变用力方向。 ⒉功:两个必要因素:①作用在物体上的力;②物体在力方向上通过距离。W=FS 功的单位:焦耳 3.功率:物体在单位时间里所做的功。表示物体做功的快慢的物理量,即功率大的物体做功快。 W=Pt P的单位:瓦特; W的单位:焦耳,符号J t的单位:秒,符号S ⒋
凸透镜成像规律
⒋凸透镜成像规律: 物距u 像距v 像的性质 光路图 应用 u>2f f<v<2f 倒缩小实 照相机 f<u<2f v>2f 倒放大实 幻灯机 u<f 放大正虚 放大镜 ⒌凸透镜成像实验:将蜡烛、凸透镜、光屏依次放在光具座上,使烛焰中心、凸透镜中心、光屏中心在同一个高度上。有这样一个顺口溜 可以将凸透镜成像规律记牢:“一焦分虚实,二焦分大小,虚像同侧正,实像异侧倒,物近像远像变大,物远像近像变小。”
[编辑本段]物理必考公式(课改区的)
g=9.8N/kg 部分考题取10N/kg 速度:v=s/t 密度:ρ=m/v 重力:G=mg 压强:p=F/s(液体压强公式不直接考) 浮力:F浮=G排=ρ液gV排 漂浮悬浮时:F浮=G物 杠杆平衡条件:F1×L1=F2×L2 功:W=FS 或W=Gh(克服重力) 功率:P=W/t=Fv 机械效率:η=W有用/W总=Gh/Fs=G/Fn(n为滑轮组的股数) 热量:Q=cm△t 热值:Q=mq 欧姆定律:I=U/R 焦耳定律:Q=(I^2)Rt=[(U^2)/R]t=UIt=Pt(后三个公式适用于纯电阻电路) 电功:W=UIt=Pt=(I^2)Rt=[(U^2)/R]t(后2个公式适用于纯电阻电路) 电功率:P=UI=W/t=(I^2)R=(U^2)/R V排÷V物=ρ物÷ρ液(F浮=G物) V露÷V排=ρ液-ρ物÷ρ物 V露÷V物=ρ液-ρ物÷ρ液 V排=V物时,G÷F浮=ρ物÷ρ液
[编辑本段]力
三、力(常见的力、力的合成与分解) 1)常见的力 1.重力G=mg (方向竖直向下,g=9.8N/Kg≈10N/Kg,作用点在重心,适用于地球表面附近) 2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)} 3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)} 4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力) 5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上) 6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上) 7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同) 8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0) 9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0) 10.浮力F=ρgV(ρ为液体密度,V为排开液体的体积) 11.液体压强P=ρgh(ρ为 液体密度,g=9.8N/Kg≈10N/Kg,h为测量点到液体自由面的深度) 注: (1)劲度系数k由弹簧自身决定; (2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定; (3)fm略大于μFN,一般视为fm≈μFN; (4)其它相关内容:静摩擦力(大小、方向)〔见第一册P7〕; (5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C); (6)安培力与洛仑兹力方向均用左手定则判定。 2)力的合成与分解 1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。 四、动力学(运动和力) 1.牛顿第一定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理} 5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重} 6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P57〕 注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
[编辑本段]振动和波
五、振动和波(机械振动与机械振动的传播) 1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向} 2.单摆周期T=2π√(l/g){l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r} 3.受振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身; (2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处; (3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式; (4)干涉与衍射是波特有的; (5)振动图象与波动图象; (6)其它相关内容:超声波及其应用〔见第二册P62〕/振动中的能量转化〔见第一册P63〕。
[编辑本段]冲量与动量
六、冲量与动量(物体的受力与动量的变化) 1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同} 3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定} 4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式} 5.动量守恒定律:p前总=p后总或p=p'′也可以是m1v1+m2v2=m1v1′+m2v2′ 6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒} 7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能} 8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体} 9.物体m1以v1初速度与静止的物体m2发生弹性正碰: v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2) 10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒) 11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失 E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移} 注: (1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上; (2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算; (3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等); (4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒; (5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。
[编辑本段]功和能
七、功和能(功是能量转化的量度) 1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角} 2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)} 3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb} 4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)} 5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)} 6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率} 7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f) 8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)} 9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)} 10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt 11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)} 12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)} 13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)} 14.动能定理(对物体做正功,物体的动能增加): W合=mvt2/2-mvo2/2或W合=ΔEK {W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)} 15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2 16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP 注: (1)功率大小表示做功快慢,做功多少表示能量转化多少; (2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功); (3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少 (4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
[编辑本段]分子动理论、能量守恒定律
八、分子动理论、能量守恒定律 1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力(1)r<r0,f引<f斥,F分子力表现为斥力 (2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值) (3)r>r0,f引>f斥,F分子力表现为引力 (4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的), W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕} 7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)} 注: (1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈; (2)温度是分子平均动能的标志; 3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; (4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小; (5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0 (6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; (7)r0为分子处于平衡状态时,分子间的距离; (8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。
[编辑本段]气体的性质
九、气体的性质 1.气体的状态参量: 温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志, 热力学温度与摄氏温度关系:T=t+273k {T:热力学温度(K),t:摄氏温度(℃)} 体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL 压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76Hg(1Pa=1N/m2) 2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大 3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度} 公式: F=PS 【S:受力面积,两物体接触的公共部分;单位:米2。】 1个标准大气压=76厘米水银柱高=1.01×105帕=10.336米水柱高 液面到液体某点的竖直高度。] 公式:P=ρgh h:单位:米; ρ:千克/米3; g=9.8牛/千克 (N/Kg) 2.阿基米德原理:浸在液体里的物体受到向上的浮力,浮力大小等于物体排开液体所受重力。 即F浮=G液排=ρ液gV排。 (V排表示物体排开液体的体积) 3.浮力计算公式:F浮=G-T=ρ液gV排=F上、下压力差 4.当物体漂浮时:F浮=G物 且 ρ物<ρ液 当物体悬浮时:F浮=G物 且 ρ物=ρ液 当物体上浮时:F浮>G物 且 ρ物<ρ液 当物体下沉时:F浮<G物 且 ρ物>ρ液 ⒈杠杆平衡条件:F1l1=F2l2。力臂:从支点到力的作用线的垂直距离 通过调节杠杆两端螺母使杠杆处于水位置的目的:便于直接测定动力臂和阻力臂的长度。 定滑轮:相当于等臂杠杆,不能省力,但能改变用力的方向。 动滑轮:相当于动力臂是阻力臂2倍的杠杆,能省一半力,但不能改变用力方向。 ⒉功:两个必要因素:①作用在物体上的力;②物体在力方向上通过距离。W=FS 功的单位:焦耳 3.功率:物体在单位时间里所做的功。表示物体做功的快慢的物理量,即功率大的物体做功快。 W=Pt P的单位:瓦特; W的单位:焦耳,符号J t的单位:秒,符号S ⒋
凸透镜成像规律
⒋凸透镜成像规律: 物距u 像距v 像的性质 光路图 应用 u>2f f<v<2f 倒缩小实 照相机 f<u<2f v>2f 倒放大实 幻灯机 u<f 放大正虚 放大镜 ⒌凸透镜成像实验:将蜡烛、凸透镜、光屏依次放在光具座上,使烛焰中心、凸透镜中心、光屏中心在同一个高度上。有这样一个顺口溜 可以将凸透镜成像规律记牢:“一焦分虚实,二焦分大小,虚像同侧正,实像异侧倒,物近像远像变大,物远像近像变小。”
[编辑本段]物理必考公式(课改区的)
g=9.8N/kg 部分考题取10N/kg 速度:v=s/t 密度:ρ=m/v 重力:G=mg 压强:p=F/s(液体压强公式不直接考) 浮力:F浮=G排=ρ液gV排 漂浮悬浮时:F浮=G物 杠杆平衡条件:F1×L1=F2×L2 功:W=FS 或W=Gh(克服重力) 功率:P=W/t=Fv 机械效率:η=W有用/W总=Gh/Fs=G/Fn(n为滑轮组的股数) 热量:Q=cm△t 热值:Q=mq 欧姆定律:I=U/R 焦耳定律:Q=(I^2)Rt=[(U^2)/R]t=UIt=Pt(后三个公式适用于纯电阻电路) 电功:W=UIt=Pt=(I^2)Rt=[(U^2)/R]t(后2个公式适用于纯电阻电路) 电功率:P=UI=W/t=(I^2)R=(U^2)/R V排÷V物=ρ物÷ρ液(F浮=G物) V露÷V排=ρ液-ρ物÷ρ物 V露÷V物=ρ液-ρ物÷ρ液 V排=V物时,G÷F浮=ρ物÷ρ液
展开全部
级全面的物理公式!!!很有用的说~~~(按照咱们的物理课程顺序总结的)
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
1)平抛运动
1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
2)匀速圆周运动
1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上) 7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(3)干涉与衍射是波特有的;
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt-mvo {Δp:动量变化Δp=mvt-mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p'′也可以是m1v1+m2v2=m1v1′+m2v2′
6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r<r0,f引<f斥,F分子力表现为斥力
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),
W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
十、电场
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
十一、恒定电流
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外 {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系 I总=I1=I2=I3 I并=I1+I2+I3+
电压关系 U总=U1+U2+U3+ U总=U1=U2=U3
功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+
10.欧姆表测电阻
(1)电路组成 (2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻
电流表内接法:
电压表示数:U=UR+UA
电流表外接法:
电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真
Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<R真
选用电路条件Rx>>RA [或Rx>(RARV)1/2]
选用电路条件Rx<<RV [或Rx<(RARV)1/2]
12.滑动变阻器在电路中的限流接法与分压接法
限流接法
电压调节范围小,电路简单,功耗小
便于调节电压的选择条件Rp>Rx
电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp<Rx
注1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;
(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;
(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;
(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);
十二、磁场
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m
2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3.洛仑兹力f=qVB(注V⊥B); {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
注:
(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;
十三、电磁感应
1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}
3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}
4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
十四、交变电流(正弦式交变电流)
1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)
2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总
3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4.理想变压器原副线圈中的电压与电流及功率关系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)
6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);
S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。
注:
(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;
(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;
(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;
(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;
十五、电磁振荡和电磁波
1.LC振荡电路T=2π(LC)1/2;f=1/T {f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)}
2.电磁波在真空中传播的速度c=3.00×108m/s,λ=c/f {λ:电磁波的波长(m),f:电磁波频率}
注:
(1)在LC振荡过程中,电容器电量最大时,振荡电流为零;电容器电量为零时,振荡电流最大;
(2)麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场;
十六、光的反射和折射(几何光学)
1.反射定律α=i {α;反射角,i:入射角}
2.绝对折射率(光从真空中到介质)n=c/v=sin /sin {光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速, :入射角, :折射角}
3.全反射:1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n
2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角
注:
(1)平面镜反射成像规律:成等大正立的虚像,像与物沿平面镜对称;
(2)三棱镜折射成像规律:成虚像,出射光线向底边偏折,像的位置向顶角偏移;
十七、光的本性(光既有粒子性,又有波动性,称为光的波粒二象性)
1.两种学说:微粒说(牛顿)、波动说(惠更斯)
2.双缝干涉:中间为亮条纹;亮条纹位置: =nλ;暗条纹位置: =(2n+1)λ/2(n=0,1,2,3,、、、);条纹间距 { :路程差(光程差);λ:光的波长;λ/2:光的半波长;d两条狭缝间的距离;l:挡板与屏间的距离}
3.光的颜色由光的频率决定,光的频率由光源决定,与介质无关,光的传播速度与介质有关,光的颜色按频率从低到高的排列顺序是:红、橙、黄、绿、蓝、靛、紫(助记:紫光的频率大,波长小)
4.薄膜干涉:增透膜的厚度是绿光在薄膜中波长的1/4,即增透膜厚度d=λ/4〔见第三册P25〕
5.光的衍射:光在没有障碍物的均匀介质中是沿直线传播的,在障碍物的尺寸比光的波长大得多的情况下,光的衍射现象不明显可认为沿直线传播,反之,就不能认为光沿直线传播
6.光的偏振:光的偏振现象说明光是横波
7.光的电磁说:光的本质是一种电磁波。电磁波谱(按波长从大到小排列):无线电波、红外线、可见光、紫外线、伦琴射线、γ射线。红外线、紫外、线伦琴射线的发现和特性、产生机理、实际应用
8.光子说,一个光子的能量E=hν {h:普朗克常量=6.63×10-34J.s,ν:光的频率}
9.爱因斯坦光电效应方程:mVm2/2=hν-W {mVm2/2:光电子初动能,hν:光子能量,W:金属的逸出功}
注:
(1)要会区分光的干涉和衍射产生原理、条件、图样及应用,如双缝干涉、薄膜干涉、单缝衍射、圆孔衍射、圆屏衍射等;
(2)其它相关内容:光的本性学说发展史/泊松亮斑/发射光谱/吸收光谱/光谱分析/原子特征谱线〔见第三册P50〕/光电效应的规律光子说〔见第三册P41〕/光电管及其应用/光的波粒二象性〔见第三册P45〕/激光〔见第三册P35〕/物质波〔见第三册P51〕。
十八、原子和原子核
1.α粒子散射试验结果a)大多数的α粒子不发生偏转;(b)少数α粒子发生了较大角度的偏转;(c)极少数α粒子出现大角度的偏转(甚至反弹回来)
2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构)
3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:hν=E初-E末{能级跃迁}
4.原子核的组成:质子和中子(统称为核子), {A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕}
5.天然放射现象:α射线(α粒子是氦原子核)、β射线(高速运动的电子流)、γ射线(波长极短的电磁波)、α衰变与β衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。γ射线是伴随α射线和β射线产生的〔见第三册P64〕
6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度}
7.核能的计算ΔE=Δmc2{当Δm的单位用kg时,ΔE的单位为J;当Δm用原子质量单位u时,算出的ΔE单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。
注:
(1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握;
(2)熟记常见粒子的质量数和电荷数;
(3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键;
(4)其它相关内容:氢原子的能级结构〔见第三册P49〕/氢原子的电子云〔见第三册P53〕/放射性同位数及其应用、放射性污染和防护〔见第三册P69〕/重核裂变、链式反应、链式反应的条件、核反应堆〔见第三册P73〕/轻核聚变、可控热核反应〔见第三册P77〕/人类对物质结构的认识。(完)
左手定则:
左手定则(安培定则):已知电流方向和磁感线方向,判断通电导体在磁场中受力方向,如电动机。
伸开左手,让磁感线穿入手心(手心对准N极,手背对准S极), 四指指向电流方向 ,那么大拇指的方向就是导体受力方向。
其原理是:
当你把磁铁的磁感线和电流的磁感线都画出来的时候,两种磁感线交织在一起,按照向量加法,磁铁和电流的磁感线方向相同的地方,磁感线变得密集;方向相反的地方,磁感线变得稀疏。磁感线有一个特性就是,每一条磁感线互相排斥!磁感线密集的地方"压力大",磁感线稀疏的地方"压力小"。于是电流两侧的压力不同,把电流压向一边。拇指的方向就是这个压力的方向。
右手定则:
确定导体切割磁感线运动时在导体中产生的感应电流方向的定则。(发电机)
右手定则的内容是:伸开右手,使大拇指跟其余四个手指垂直并且都跟手掌在一个平面内,把右手放入磁场中,让磁感线垂直穿入手心,大拇指指向导体运动方向,则其余四指指向感应电流的方向。
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
1)平抛运动
1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
2)匀速圆周运动
1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上) 7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(3)干涉与衍射是波特有的;
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt-mvo {Δp:动量变化Δp=mvt-mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p'′也可以是m1v1+m2v2=m1v1′+m2v2′
6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r<r0,f引<f斥,F分子力表现为斥力
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),
W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
十、电场
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
十一、恒定电流
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外 {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系 I总=I1=I2=I3 I并=I1+I2+I3+
电压关系 U总=U1+U2+U3+ U总=U1=U2=U3
功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+
10.欧姆表测电阻
(1)电路组成 (2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻
电流表内接法:
电压表示数:U=UR+UA
电流表外接法:
电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真
Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<R真
选用电路条件Rx>>RA [或Rx>(RARV)1/2]
选用电路条件Rx<<RV [或Rx<(RARV)1/2]
12.滑动变阻器在电路中的限流接法与分压接法
限流接法
电压调节范围小,电路简单,功耗小
便于调节电压的选择条件Rp>Rx
电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp<Rx
注1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;
(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;
(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;
(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);
十二、磁场
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m
2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3.洛仑兹力f=qVB(注V⊥B); {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
注:
(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;
十三、电磁感应
1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}
3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}
4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
十四、交变电流(正弦式交变电流)
1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)
2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总
3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4.理想变压器原副线圈中的电压与电流及功率关系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)
6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);
S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。
注:
(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;
(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;
(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;
(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;
十五、电磁振荡和电磁波
1.LC振荡电路T=2π(LC)1/2;f=1/T {f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)}
2.电磁波在真空中传播的速度c=3.00×108m/s,λ=c/f {λ:电磁波的波长(m),f:电磁波频率}
注:
(1)在LC振荡过程中,电容器电量最大时,振荡电流为零;电容器电量为零时,振荡电流最大;
(2)麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场;
十六、光的反射和折射(几何光学)
1.反射定律α=i {α;反射角,i:入射角}
2.绝对折射率(光从真空中到介质)n=c/v=sin /sin {光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速, :入射角, :折射角}
3.全反射:1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n
2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角
注:
(1)平面镜反射成像规律:成等大正立的虚像,像与物沿平面镜对称;
(2)三棱镜折射成像规律:成虚像,出射光线向底边偏折,像的位置向顶角偏移;
十七、光的本性(光既有粒子性,又有波动性,称为光的波粒二象性)
1.两种学说:微粒说(牛顿)、波动说(惠更斯)
2.双缝干涉:中间为亮条纹;亮条纹位置: =nλ;暗条纹位置: =(2n+1)λ/2(n=0,1,2,3,、、、);条纹间距 { :路程差(光程差);λ:光的波长;λ/2:光的半波长;d两条狭缝间的距离;l:挡板与屏间的距离}
3.光的颜色由光的频率决定,光的频率由光源决定,与介质无关,光的传播速度与介质有关,光的颜色按频率从低到高的排列顺序是:红、橙、黄、绿、蓝、靛、紫(助记:紫光的频率大,波长小)
4.薄膜干涉:增透膜的厚度是绿光在薄膜中波长的1/4,即增透膜厚度d=λ/4〔见第三册P25〕
5.光的衍射:光在没有障碍物的均匀介质中是沿直线传播的,在障碍物的尺寸比光的波长大得多的情况下,光的衍射现象不明显可认为沿直线传播,反之,就不能认为光沿直线传播
6.光的偏振:光的偏振现象说明光是横波
7.光的电磁说:光的本质是一种电磁波。电磁波谱(按波长从大到小排列):无线电波、红外线、可见光、紫外线、伦琴射线、γ射线。红外线、紫外、线伦琴射线的发现和特性、产生机理、实际应用
8.光子说,一个光子的能量E=hν {h:普朗克常量=6.63×10-34J.s,ν:光的频率}
9.爱因斯坦光电效应方程:mVm2/2=hν-W {mVm2/2:光电子初动能,hν:光子能量,W:金属的逸出功}
注:
(1)要会区分光的干涉和衍射产生原理、条件、图样及应用,如双缝干涉、薄膜干涉、单缝衍射、圆孔衍射、圆屏衍射等;
(2)其它相关内容:光的本性学说发展史/泊松亮斑/发射光谱/吸收光谱/光谱分析/原子特征谱线〔见第三册P50〕/光电效应的规律光子说〔见第三册P41〕/光电管及其应用/光的波粒二象性〔见第三册P45〕/激光〔见第三册P35〕/物质波〔见第三册P51〕。
十八、原子和原子核
1.α粒子散射试验结果a)大多数的α粒子不发生偏转;(b)少数α粒子发生了较大角度的偏转;(c)极少数α粒子出现大角度的偏转(甚至反弹回来)
2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构)
3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:hν=E初-E末{能级跃迁}
4.原子核的组成:质子和中子(统称为核子), {A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕}
5.天然放射现象:α射线(α粒子是氦原子核)、β射线(高速运动的电子流)、γ射线(波长极短的电磁波)、α衰变与β衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。γ射线是伴随α射线和β射线产生的〔见第三册P64〕
6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度}
7.核能的计算ΔE=Δmc2{当Δm的单位用kg时,ΔE的单位为J;当Δm用原子质量单位u时,算出的ΔE单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。
注:
(1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握;
(2)熟记常见粒子的质量数和电荷数;
(3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键;
(4)其它相关内容:氢原子的能级结构〔见第三册P49〕/氢原子的电子云〔见第三册P53〕/放射性同位数及其应用、放射性污染和防护〔见第三册P69〕/重核裂变、链式反应、链式反应的条件、核反应堆〔见第三册P73〕/轻核聚变、可控热核反应〔见第三册P77〕/人类对物质结构的认识。(完)
左手定则:
左手定则(安培定则):已知电流方向和磁感线方向,判断通电导体在磁场中受力方向,如电动机。
伸开左手,让磁感线穿入手心(手心对准N极,手背对准S极), 四指指向电流方向 ,那么大拇指的方向就是导体受力方向。
其原理是:
当你把磁铁的磁感线和电流的磁感线都画出来的时候,两种磁感线交织在一起,按照向量加法,磁铁和电流的磁感线方向相同的地方,磁感线变得密集;方向相反的地方,磁感线变得稀疏。磁感线有一个特性就是,每一条磁感线互相排斥!磁感线密集的地方"压力大",磁感线稀疏的地方"压力小"。于是电流两侧的压力不同,把电流压向一边。拇指的方向就是这个压力的方向。
右手定则:
确定导体切割磁感线运动时在导体中产生的感应电流方向的定则。(发电机)
右手定则的内容是:伸开右手,使大拇指跟其余四个手指垂直并且都跟手掌在一个平面内,把右手放入磁场中,让磁感线垂直穿入手心,大拇指指向导体运动方向,则其余四指指向感应电流的方向。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
力学辅导
力学包括静力学、运动学和动力学。即:力,牛顿运动定律,物体的平衡,直线运动,曲线运动,振动和波,功和能,动量和冲量,等。
一、重要概念和规律
(一)重要概念
1.力、力矩
力是物体间的相互作用。其效果使物体发生形变和改变物体的运动状态即产生加速度。力不能脱离物体而独立存在.有力作用时,同时存在受力物体和施力物体但物体间不一定接触。力是矢量。力按性质可分重力(g=mg)、弹力(胡克定律f=kx)、摩擦力(0<f静<f最大、,f=μn)、分子力、电磁力等。按效果可分拉力、压力、支持力,张力、动力、阻力、向心力、回复力等。对于各种力要弄清它的产生原因、特点、大小、方向、作用点和具体效果。
力矩是改变物体转动状态的原因。力矩m=fl通常规定使物体顺(逆)时针转动的力矩为负(正)。注意力臂l是指转轴至力的作用线的垂直距离。
2.质点、参照物
质点指有质量而不考虑大小和形状的物体。平动的物体一般视作质点。
参照物指假定不动的物体。一般以地面做参照物。
3.位置、位移(s)、速度(v)、加速度(a)
质点的位置可以用规定的坐标系中的点表示.
位移表示物体位置的变化,是由始位置引向末位置的有向线段。位移是矢量,与路径无关.而路程是标量,是物体运动轨迹的实际长度,与路径有关。
速度表示质点运动的快慢和方向,它的方向就是位移变化的方向。其大小称为速率。在s-t图象中,某点的速度即为图线在该点物线的斜率。在匀速四周运动中,用线速度v=s/t和角速度ω=φ/t,v是矢量,方向为该点的切线方向,两者的关系为v=ωr。
加速度表示速度变化的快慢,它的方向与速度变化的方向相同,但不一定限速度方向相同。在v-t图象中某点的加速度即为图线在该点切线的斜率。
在匀速圆周运动中,用向心加速度a=v2/r和a=ω2r描述,其方向始终指向圆心。
4.质量(m)、惯性
质量表示物体内含有物质的多少,是一标量且为恒量.惯性指物体保持原来的匀速直线运动状态或静止状态的性质,是物体固有的属性。惯性由质量来量度,物体的质量越大,其惯性就越大,就越难改变它的运动状态。
6.周期(t)、频率(f)、振幅(a}
在匀速圆周运动中,周期指物体运动一周的时间,频率指物体在单位时间内转动的周数。在简谐振动中,周期指物体完成一次全振动的时间,频率指在单位时间内完成的全振动防次数.波动的频率决定于波源振动的频率,它跟传播的媒质无关。周期和频率的关系;t=1/f。振幅指振动物体离开平衡位置的最大距离。振幅越大,振动能量也越大。
7.相和相差
相是决定作简谐振动的物理量在任一时刻的运动状态的物理量。相差指两个振动的相位差,即△φ=φ2-φ1当△φ=0时,称为同相;当△φ=π时,称为反相。
8.波长(λ)、波速(v)
波长指两个相邻的、在振动过程中对平衡位置的位移总是相同的质点间均距离。波速指振动传播的速度。波长、频率和波速的关系为v=λf。同一种波当它从一种介质进入到另一种介质时,波长和波速要发生改变,但频率不变。
9.波的干涉和衍射
波的干涉指两个相干波源(两个波源频率相同、相差恒定)发出的波叠加时能形成干涉图样(某些振动加强的区域和某些振动减弱的区域互相间隔的区域)。其条件:两个相干波源发出的波叠加。
波的衍射指波绕过障碍物传播的现象。发生明显衍射现象的条件:障碍物或孔的尺寸跟波长差不多。
10.音调、响度、音品
这是表征乐音三个特点的物理量,音调决定于声源的频率。响度决定于声源的振幅。音品决定于泛音的个数、泛音的频率和振幅。
11.功(w)
功是表示力作用一段位移(空间积累)效果的物理量。要深刻理解功的杨念:①如果物体在力的方向上发生了位移,就说这个力对物体做了功。因此,凡谈到做功,一定要明确指出是哪个力对哪个物体做了功。②做功出必须具有两个必要的因素;力和物体在力的方向上发生了位移。因此,如果力在物体发生的那段位移里做了功,则物体在发生那段位移的过程里始终受到该力的作用,力消失之时即停止做功之时。③力做功是一个物理过程,做功的多少反映了在这物理过程中能量变化的多少。④功可用公式w=fscosα计算。当 0<α<90°时,力做正功,当α=90°时,力不做功, 当90°<α<180°时,力做负功(或说成物体克服该力做正功)。⑤功是标量,但功有正负。功的正负仅表示力在使物体移的过程中起了动力作用还是阻力作用。⑥和外力对物体所做的功等于各个外力对物体做功的代数和。
12.功率(p)
功率是表示做功快慢的物理量。要注意理解:①公式p=w/t是功率的定义式,表示在时间t内的平均功率。②公式p=fvcosa表示即时功率。当发动机的功率一定时,牵引力f与速度v成反比,但不能理解为当v趋近于零时f可趋近于无穷大,也不能理解为当f趋近于零时v可趋近于无穷大,这是由于受到机器构造上的限制的缘故。③要注意区别额定功率(发动机在正常工作时的最大输出功率)和输出功率间的区别和取系。当发动机的输出功率等于额定功率时,它所牵引以物体达最大速度。最大速度受额定功率的限制。④在si制中,功率的单位是瓦特;实用单位有千瓦等。要注意其换算关系。
13.能量(e)、动能(ek)、势能(ep)
我们认为能够对外界做功的物体具有能量。能量是表示物体状态的物理量。能量是标量。动能和势能总称为机械能。
动能是由于物体运动而具有的能。用公式ek=mv2/2计算。要注意:①ek是相对于某一时刻(或某一状态)的动能,动能与物体的质量和速率有关,而与速度方向无关。②动能是标量,且恒为正值。③物体的动能具有相对性,对于不同的参照物,由于v不同。因而ek也不同。通常以地面为参照物。
势能包括重力势能和弹性势能。重力势能是由于物体被举高而具有的能。用公式ep=mgh计算。要注意:①重力势能是物体和地球组成的系统所共有的。因而重力势能具有相对性,它的大小决定于参考平面的选择,通常选择地面为参考平面。重力势能的差值不因选择不同的参考平面而有所不同。②重力对物体做多少正(负)功。物体的重力势能就减少(增加)多少.重力做功的特点是只跟物体的起点和终点位置有关,而限物体运动的路径无关。③重力势能是标量,但有正负。当物体在参考平面上(下)方时观u重力势能为正(负)值。
弹性势能是由于物体发生弹性形变而具有的能。任何发生弹性形变的物体都具有弹性势能.弹力对弹簧做多少正(负)功,弹簧的弹性势能就减少(增加)多少。弹簧的弹性势能决定于弹簧被压缩(或拉伸)的长度及弹簧的倔强系数。
14.冲量(i)、动量(p)
冲量i=ft,是矢量,其方向决定于力的方向。 服从矢量运算法则——平行四边形定则。表示力在时间上的积累效果。有力作用在物体上即使物体产生加速度,但需经过段时间才能改变物体的速度。
动量p=mv,是矢量,其方向决定于速度的方向。服从矢量运算法则——平行四边形定则。表示物体运动状态的物理量。
(二)重要规律
1.力的独立作用原理:当物体受到几个力的作用时,每个力各自独尊地使物体产生一个加速度,就像其他的力不存在一植物体的实际加速度为这几个加速度的矢量和。
2.牛顿运动定律:经典力学的基本定律。适用于低速运动的宏观物体。
牛顿第一定律揭示了惯性和力的物理会义。
牛顿第二定律(f=ma)揭示了物体的加速度跟它所受的外力及物体本身质皮之间的关系、使用时注意矢量性(a与f的方向始终一致)、同时性(有力f必同时产生a)、相对性(相对于地面参照系)、统一性(单位统一用si制)。
牛顿第三定律(f=-f')揭示了物体相互作用力间的关系。注意相互作用力与平衡力的区别。
3.物体的平衡条件:物体平衡时,即或静止、或匀速直线运动、或匀速转动状态。在共点力作用下物体的平衡条件是f= 0.有固定转动轴的物体的平衡条件是m=0。注意:对于共点力平衡.必有 m=0。对于固定转动轴平衡,必有f=0。还要注意力的平衡和物体的平衡的区别。
4.匀变速直线运动规律:a的大小和方向一定。可以用公式和图象(s-t图象和v-t图象)描述。注意:①公式v=(v0+vt)/2只适用于匀变速直线运动.②判断初速度不为零的句变速直线运动或测定其加速度的公式为△s=at2 ,即从任一时刻开始,在连续相等的各时间间隔t内的位移差△s都相等。判断初速度为零的匀变速直线运动时,方法一;用s1:s2:s3……=1:3:5……判断(可作为充分必要条件)。方法二:同时满足△s=at2 (仅作为必要条件)和△s/s1=2/1。③利用图象处理问题时,要注意其点、线、斜率、面积等的物理意义。
5.曲线运动的规律:利用运动的合成和分解方法。平抛运动可视为水平匀速直线运动竖直方向的自由落体的合运动。
匀速圆周运动虽向心加速度的大小不变,但方向时刻在变且恒指向圆心,所以是一种变加速运动。其向心力f=mv2/r或f=mω2r,它与速度方向垂直。故只能改变物体的速度方向。向心力不是什么特殊的力,任何一种力或几种力的合力都可提供为向心力。
行星运动的规律由开普勒三定律揭示,三定律分别指明了行星运动的轨道、行星沿轨道运动时速率的变化以及周期与轨道半径的关系(r3/t2=k)。万有引力定律揭示了行星运动的本质原因,可应用来发现天体并计算天体的质量和密度。
6.振动和波动的规律:当物体受到指向平衡位置的回复力作用且阻力足够小时,物体将作机械振动。振动可分自由振动和受迫振动。当策动力的频率跟物体的固有频率相等时,将发生共振,振幅达最大。简指振动是一种变加速运动.其特点是所受外力的合力符合f=-kx,加速度符合a=-kx/m。这两个特点可作为判别一个物体是否作简谐振动的依据。简诺振动的图象是正弦(或余弦)曲线,它表示振动物体的位移随时间而变化的情况。典型的间谐振动有单摆和弹簧振子等。作简谐振动的系统的能量是守恒的,振幅越大,能量越大。
机械振动在煤质中的传播过程形成机械波。其特点是只传播振动的能量而媒质本身并不迁移.波动遵循叠加原理,能发生干涉和衍射现象。波动的任一质点的振动周期(或频率)和波源的振动周期(或频率)一致.波动有横波和纵波之分。波动图象也是正弦6或余弦)曲线,它表示某一时刻各个质点的位移。在判别质点振动方向时要注意波动方向。
7.动能定理
动能定理揭示了外力对物体所做的总功与物体动能变化间的关系。要注意:①动能定理的研究对象是质点(或单个物体)。②由动能定理可知:动力做正功使物体的动能增加z阻力做负功,使物体的动能减少。③w指作用于物体的各个力所做功的代数和,因此要注意分辨功的正负。④ek1和 ek2分别为初始状态和终了状态的动能。因此,ek2-ek1仅由初末两个运动状态决定,不涉及运动过程中的具体细节。⑤公式w=ek2- ek1为标量式,但有正负。w为正(负)表示物体的动能增加(减少)。ek2- ek1为正(负)也表示物体的动能增加(减少)。
8.机械能守恒定律
机械能守恒定律揭示了物体在只有重力(或弹力)做功的情况下,物体总的机械能保持不变及其动能和重力势能相互转化的规律。可表示为e2=e1,要注意:①该定律所研究的对象是物体系统。所谓机械能守恒,是指系统的总机械能守恒。②机械能守恒的条件:在只有重力(或弹力)做功的情况下。③el和e2是指物体系统在任意两个运动状态时的机械能,并不涉及el和e2间互相转化的具体细节.④动能定理和机械能守恒定律有一定的关系:当只有重力做功时,应用动能定理可以得机械能守恒定律。
9.动量定理
动量定理揭示了物体所受的冲量与其动量变化间的关系。要注意:①动量定理所研究的对象是质点(或单个物体、或可视为单个物体的系统)。②动量定理具有普适性,即运动轨迹不论是直线还是曲线,作用力不论是恒力还是变力(f为变力在作用时间内的平均值),几个力作用的时间不论是同时还是不同时,都适用。③f指物体所受的合外力。冲量ft的方向与动量变化m·△v的方向相同。
10.动量守恒定律
动量守恒定律揭示了物体在不受外力或所受外力的合力为零时的动量变化规律。对由两个物体组成的系统,可表达为m1v1+m2v2=m1v1'+m2v2'要注意:①系统的封闭性。动量守恒定律所研究的对象是物体系统,所谓动量守恒是指系统的总动量守恒。②动量守恒的限制性。守恒的条件是f=0。这包含几种情况:一是系统根本不受到外力;二是系统所受的合外力为零;三是系统所受的外力远比内力小,且作用时打很短;四是系统在某个方向上所受的合外力为零、③速度的相对性。公式中的速度是相对于同一参照物而言的。④时间的同时性。系统的动量守恒是指在同一段时间里物体相互作用前后而言的。⑤动量的矢量性.如果系统内物体作用前后的动量在同一直线上。则可选定正方向后用正、负号表示,将矢量运算化简为代数运算m6)n律具有普适性。
11.碰撞规律
弹性碰撞同时满足动量守恒和动能守恒,无能量损失。完全非弹性碰撞只满足动量守恒,动能损失最大。
6.功和能的关系
功是能的转化的量度。做功的过程总是伴随着能量的改变,能量的改变需通过做功来实现。功是描述物理过程的物理量,能量是描述物理状态的物理量。如果只有重力或弹力做功坝u机械能守恒。如果除重力和弹力做功外,还有其他力做功,则机械能和其他形式的能之间发生转化,但总的能量保持不变,这就是能量的转化和守恒定律。机械能守恒定律是能量守恒定律的一种特殊情况。
二、重要研究方法
1.寻求“守恒量”。物理世界千变万化,但有些物理量在一定条件下遵循守恒的规律。如力学中,有质量守恒、机械能守恒和动量守恒z电学中有电荷守恒等.由于守恒定律适用范围广。处理问题方便,因此,寻求“守恒量”已成为物理研究的一个重要方面。
2.运用等量转化的研究方法。运用这种方法,可进一步揭示相关物理量之间的联系,发现新规律.如:由重力做功使物体动能增加,可以得到机械能守恒定律的表达形式之一。
3.发散思维。多角度地研究同一物理问题。如力学中,从力的瞬时,时间积累、房间积累效果研究,分别发现了牛顿运动定律、动量定理、动能定理,从各个不同的角度揭示了物探规律;为解决问题提供了多种渠道。
三、基本解题思路
归纳起来,力学中有三把金钥匙,那么.遇到力学问题,究竟怎样选用和使用金钥匙呢?基本思路是:
1.审清题意,弄清物理过程,明确研究对象,画好两图:物理过程示意图和研究对象受力分析图。
2. 对涉及要求速度和位移的问题,先从能量观点入手分析往往会带来方便。即对各个力所做的功,物体速度的变化情况作出分析。如果研究对象是一系统,且只有重力做功,则应用机械能守恒定律解。如果研究对象是一物体,且还有其他力做功.则应用动能定理解.要注意分清正负功。选定零势能点。初末状态的机械能或动能、统一单位等问题。
3.对涉及要求时间和速度的问题,先从动量和冲量观点入手分析往往会带来方便。即对各个力的冲量、物体动量的变化情况作出分析。如果研究对象是一系统,且所受合力f=0,则应用动量守恒定律解。如果研究对象是一物体,且f≠0,则应用动量定理解。要注意选定正方向、分清动量和冲量的正负。初末状态的动量、统一单位等问题。
4. 对涉及要求加速度和时间的问题,先从牛顿运动定律入手分析往往会带来方民即对研究对象分析其运动状态和受力情况后,列出其运动方程,必要时再运用运动学公式解之。要注意分析各运动过程中物体的受力情况、选定正方向。统一单位等问题。
5.选用上述三把金钥匙解题是相对的。一切要视具体问题来定。有时需同时用之,有时可分别用之。这就需要通过解题不断总结经验教训。才能深刻领会,灵活运用。
四、重要研究方法
1.选取理想化模型和过程。这是重要的科学抽象理想化的方法,即只研究主要因素而忽略次要因素,使研究问题简化。如。质点、自由落体、单摆和弹簧振子等理想化模型和平衡、匀变速直线运动。匀速四周运动、抛体运动、简连振动等理想化物理过程。
2.解析法。通过定量分析用公式表达物理规律。解析法具有推理严密和定量分析的特点
3.图象法。通过建立坐标系表达物理量之间的变化关系。如:位移图象、速度图象、振动图象、波动图象等。图象法具有直观形象的特点。
4.隔离法。把研究对象从周围物体中隔离出来便于受力分析和处理问题。被隔离的研究对象可以是一个物体或物体的一部分,也可以是几个物体组成的系统。
5.矢量运算法。按照平行四边形法则或三角形法则进行。当物体的运动在同一直线上时,可选定一个正方向,将矢量运算转化为代数运算。选定正方向要以处理问题方便为原则,通常可规定初速度方向,加速度方向、坐标轴正方向为正方向。
6.运动的分解合成法。将复杂运动看作由几个简单运动所组成。它包括位移、速度、加速度、力的分解与合成。合成和分解要视问题的需要和实际效果进行.正交分解法是常用的方法。
五、基本解题思路
解答力学问题通常可按如下思路进行:
1.审清题意,弄清物理过程,画出示意图。
2.明确研究对象,正确受力分析,画出受力图。
3.选取坐标系,规定正方向。
4.选准物理规律,列出方程.
5.解出所求物理量的文学表达式,代入统一单位后的数据。
6.计算结果,验算讨论。
六、复习建议
通过本讲力学的复习,要求明确力学中以牛顿运动定律为核心的知识整体结构,深刻理解以力、速度、加速度、质量等为主体的重要力学概念,熟练掌握静力学、运动学和动力学中的重要规律。要求明确力学中以牛顿运动定律、动能定理和机械能守恒定律、动量定理和动量守恒定律为核心的知识体系,深刻理解功、功率、动能、势能、机械能、动量、冲量等重要概念,熟练掌握动能定理、机械能守恒定律、动量定理、动量守恒定律等重要规律,能灵活地运用三把力学金钥匙解决力学问题,不断开拓解题思路,增强解题能力。进一步了解研究力学乃至研究物理学的重要研究方法,能似明晰的思路熟练地解决有关力学问题。继续激发学习物理的兴趣,熏陶良好的学习(包括复习)习惯,培养能力,开发智力,并为后续内容的复习打下良好的基础。
1.制订复习计划
为加强计划性,提高复习效率,应当注重制订切实可行的复习计划。一般分两轮进行:第一轮要求一章一节全面细致的复习,着重抓好基础。第二轮要求深化知识,综合提高,灵活运用。要注重重点内容的专题复习,在重解题方法和技巧的灵活运用,注重解题规范化和实验技能的训练,注重科学的安排时间以提高复习效率。切忌重理论轻实际、重资料轻教材、重结论轻过程、重解题轻应用的不良倾向.
2.把握知识的深广度
要切实遵循大纲和教材,不要随意拓宽加深,注意摆脱题海,避免陷入偏、怪、难的歧途,要把握好知识的深广度。如下列内容不作要求:静摩擦系数的概念,物体的一般平衡条件和开普勒三定律等物理规律,按有效数字规则运算,用速度图象去计算问题,互换振动图象和波动图象。对矢量运算仅限于解直角三角形,对力矩平衡问题仅限于有固定转动轴的情况,对连接体问题仅限于相连物体的加速度大小和方向相同的情况,对有关向心力的计算仅限于掏心力是由一条直线上的力合成的情况,对竖直平面上的圆周运动仅限于计算最高点和最低点的有关问题.关于负功的概念,只要求明确它的物理意义。关于功率的概念,有时由于负功的出现也会遇到功率是负值的情况,则仅要求知道它的物理意义是阻力在单位时间里所做的功。关于弹性势能,只要求定性了解它的产生、与哪些因素有关、与其它能的转化,而不要求用公式进行计算。不要求用功能关系解题。关于碰撞,只研究正碰,不区分弹性碰撞和非弹性碰撞,且只讨论一维的情况。应用动量定理和动量守恒定律解题只限于一维的情况。
3. 掌握知识结构
力学所研究的对象是质点和有固定转动轴的物体。力学所研究的物理现象是平衡状态、匀变速直线运动、抛体运动、匀速圆周运动、振动和波动、反冲运动、碰撞等。力学所研究的方法及其获得的规律可分为:从力的角度考虑,有牛顿运动定律,动量定理和动量守恒定律;从能的角度考虑,有动能定理和机械能守恒定律.为此,要十分注重深化对力学概念、规律和思维方法的理解和应用。
力学从总体上可分运动学和动力学两大部分,静力学只是运动学中当速度为零(或角速度为定值)时的特殊情况。运动学所研究的是物体的运动状态,描述的是运动现象;而动力学所研究的则是改变物体运动状态的原因,即从力和能两个不同的角度揭示了运动的本质(即三把力学金钥匙)。学习力学的过程就是不断分析运动现象与揭示运动本质的过程。在总复习之时,应当充分意识到这一点,从而更好地将已学过的揭示本质的物理规律去分析和解决已学过的运动现象和尚未遇见的许多问题。
4. 要注意深化对物理概念的理解
如,关于功的概念,在初中规定功w=fs,其中s为物体在力的方向上通过的距离。在高中则将功定义为w=fscosα,即功等于力跟物体在力的方向上的位移的乘积。讨论了正功和负功的意义以及合外力所做功的计算方法。研究力做功除了力学中涉及的力外,还有电场力、磁场力、洛舍兹力等,复习时,要把它们串起来,比较它们做功的特点。在高中学习能量时,进一步揭示了功的本质,功是描述物理过程的物理量。做功总是伴随着能量的转化。关于功率的概念,讨论了平均功率、即时功率、额定功率、输出功率等概念。关于能量的概念,从初中的定性研究发展至高中的定量计算动能和重力势能。通过动能定理、机械能守恒定律,定量地揭示了功和能的关系;功是能量转化的量度,能量在转化中保持守恒.
5.要注意揭示物理规律之间的区别和内在联系
从力的角度总结出了牛顿运动定律、动量定理、动量守恒定律。从能的角度总结出了动能定理、机械能守恒定律。虽然,从不同的角度所得的规律不同,但描述的是同一物理现象,揭示的本质是一致的。当然,也有着许多不同之处,要注重通过列表等形式从研究对象、研究角度、适用范围、成立条件、矢量性、解题思路等方面加以比较,以加深对相近知识的理解。
6.要注意加强思维训练
可先以物理规律为专题训练收敛思维,归纳出运用三把力学金钥匙解题的不同的基本思路。然后,可在解同一道题时,训练发散思维,从多角度地考虑问题,防止用某一规律训练解题所造成的思维定势,从而有效地培养灵活地综合应用知识的能力.
力学包括静力学、运动学和动力学。即:力,牛顿运动定律,物体的平衡,直线运动,曲线运动,振动和波,功和能,动量和冲量,等。
一、重要概念和规律
(一)重要概念
1.力、力矩
力是物体间的相互作用。其效果使物体发生形变和改变物体的运动状态即产生加速度。力不能脱离物体而独立存在.有力作用时,同时存在受力物体和施力物体但物体间不一定接触。力是矢量。力按性质可分重力(g=mg)、弹力(胡克定律f=kx)、摩擦力(0<f静<f最大、,f=μn)、分子力、电磁力等。按效果可分拉力、压力、支持力,张力、动力、阻力、向心力、回复力等。对于各种力要弄清它的产生原因、特点、大小、方向、作用点和具体效果。
力矩是改变物体转动状态的原因。力矩m=fl通常规定使物体顺(逆)时针转动的力矩为负(正)。注意力臂l是指转轴至力的作用线的垂直距离。
2.质点、参照物
质点指有质量而不考虑大小和形状的物体。平动的物体一般视作质点。
参照物指假定不动的物体。一般以地面做参照物。
3.位置、位移(s)、速度(v)、加速度(a)
质点的位置可以用规定的坐标系中的点表示.
位移表示物体位置的变化,是由始位置引向末位置的有向线段。位移是矢量,与路径无关.而路程是标量,是物体运动轨迹的实际长度,与路径有关。
速度表示质点运动的快慢和方向,它的方向就是位移变化的方向。其大小称为速率。在s-t图象中,某点的速度即为图线在该点物线的斜率。在匀速四周运动中,用线速度v=s/t和角速度ω=φ/t,v是矢量,方向为该点的切线方向,两者的关系为v=ωr。
加速度表示速度变化的快慢,它的方向与速度变化的方向相同,但不一定限速度方向相同。在v-t图象中某点的加速度即为图线在该点切线的斜率。
在匀速圆周运动中,用向心加速度a=v2/r和a=ω2r描述,其方向始终指向圆心。
4.质量(m)、惯性
质量表示物体内含有物质的多少,是一标量且为恒量.惯性指物体保持原来的匀速直线运动状态或静止状态的性质,是物体固有的属性。惯性由质量来量度,物体的质量越大,其惯性就越大,就越难改变它的运动状态。
6.周期(t)、频率(f)、振幅(a}
在匀速圆周运动中,周期指物体运动一周的时间,频率指物体在单位时间内转动的周数。在简谐振动中,周期指物体完成一次全振动的时间,频率指在单位时间内完成的全振动防次数.波动的频率决定于波源振动的频率,它跟传播的媒质无关。周期和频率的关系;t=1/f。振幅指振动物体离开平衡位置的最大距离。振幅越大,振动能量也越大。
7.相和相差
相是决定作简谐振动的物理量在任一时刻的运动状态的物理量。相差指两个振动的相位差,即△φ=φ2-φ1当△φ=0时,称为同相;当△φ=π时,称为反相。
8.波长(λ)、波速(v)
波长指两个相邻的、在振动过程中对平衡位置的位移总是相同的质点间均距离。波速指振动传播的速度。波长、频率和波速的关系为v=λf。同一种波当它从一种介质进入到另一种介质时,波长和波速要发生改变,但频率不变。
9.波的干涉和衍射
波的干涉指两个相干波源(两个波源频率相同、相差恒定)发出的波叠加时能形成干涉图样(某些振动加强的区域和某些振动减弱的区域互相间隔的区域)。其条件:两个相干波源发出的波叠加。
波的衍射指波绕过障碍物传播的现象。发生明显衍射现象的条件:障碍物或孔的尺寸跟波长差不多。
10.音调、响度、音品
这是表征乐音三个特点的物理量,音调决定于声源的频率。响度决定于声源的振幅。音品决定于泛音的个数、泛音的频率和振幅。
11.功(w)
功是表示力作用一段位移(空间积累)效果的物理量。要深刻理解功的杨念:①如果物体在力的方向上发生了位移,就说这个力对物体做了功。因此,凡谈到做功,一定要明确指出是哪个力对哪个物体做了功。②做功出必须具有两个必要的因素;力和物体在力的方向上发生了位移。因此,如果力在物体发生的那段位移里做了功,则物体在发生那段位移的过程里始终受到该力的作用,力消失之时即停止做功之时。③力做功是一个物理过程,做功的多少反映了在这物理过程中能量变化的多少。④功可用公式w=fscosα计算。当 0<α<90°时,力做正功,当α=90°时,力不做功, 当90°<α<180°时,力做负功(或说成物体克服该力做正功)。⑤功是标量,但功有正负。功的正负仅表示力在使物体移的过程中起了动力作用还是阻力作用。⑥和外力对物体所做的功等于各个外力对物体做功的代数和。
12.功率(p)
功率是表示做功快慢的物理量。要注意理解:①公式p=w/t是功率的定义式,表示在时间t内的平均功率。②公式p=fvcosa表示即时功率。当发动机的功率一定时,牵引力f与速度v成反比,但不能理解为当v趋近于零时f可趋近于无穷大,也不能理解为当f趋近于零时v可趋近于无穷大,这是由于受到机器构造上的限制的缘故。③要注意区别额定功率(发动机在正常工作时的最大输出功率)和输出功率间的区别和取系。当发动机的输出功率等于额定功率时,它所牵引以物体达最大速度。最大速度受额定功率的限制。④在si制中,功率的单位是瓦特;实用单位有千瓦等。要注意其换算关系。
13.能量(e)、动能(ek)、势能(ep)
我们认为能够对外界做功的物体具有能量。能量是表示物体状态的物理量。能量是标量。动能和势能总称为机械能。
动能是由于物体运动而具有的能。用公式ek=mv2/2计算。要注意:①ek是相对于某一时刻(或某一状态)的动能,动能与物体的质量和速率有关,而与速度方向无关。②动能是标量,且恒为正值。③物体的动能具有相对性,对于不同的参照物,由于v不同。因而ek也不同。通常以地面为参照物。
势能包括重力势能和弹性势能。重力势能是由于物体被举高而具有的能。用公式ep=mgh计算。要注意:①重力势能是物体和地球组成的系统所共有的。因而重力势能具有相对性,它的大小决定于参考平面的选择,通常选择地面为参考平面。重力势能的差值不因选择不同的参考平面而有所不同。②重力对物体做多少正(负)功。物体的重力势能就减少(增加)多少.重力做功的特点是只跟物体的起点和终点位置有关,而限物体运动的路径无关。③重力势能是标量,但有正负。当物体在参考平面上(下)方时观u重力势能为正(负)值。
弹性势能是由于物体发生弹性形变而具有的能。任何发生弹性形变的物体都具有弹性势能.弹力对弹簧做多少正(负)功,弹簧的弹性势能就减少(增加)多少。弹簧的弹性势能决定于弹簧被压缩(或拉伸)的长度及弹簧的倔强系数。
14.冲量(i)、动量(p)
冲量i=ft,是矢量,其方向决定于力的方向。 服从矢量运算法则——平行四边形定则。表示力在时间上的积累效果。有力作用在物体上即使物体产生加速度,但需经过段时间才能改变物体的速度。
动量p=mv,是矢量,其方向决定于速度的方向。服从矢量运算法则——平行四边形定则。表示物体运动状态的物理量。
(二)重要规律
1.力的独立作用原理:当物体受到几个力的作用时,每个力各自独尊地使物体产生一个加速度,就像其他的力不存在一植物体的实际加速度为这几个加速度的矢量和。
2.牛顿运动定律:经典力学的基本定律。适用于低速运动的宏观物体。
牛顿第一定律揭示了惯性和力的物理会义。
牛顿第二定律(f=ma)揭示了物体的加速度跟它所受的外力及物体本身质皮之间的关系、使用时注意矢量性(a与f的方向始终一致)、同时性(有力f必同时产生a)、相对性(相对于地面参照系)、统一性(单位统一用si制)。
牛顿第三定律(f=-f')揭示了物体相互作用力间的关系。注意相互作用力与平衡力的区别。
3.物体的平衡条件:物体平衡时,即或静止、或匀速直线运动、或匀速转动状态。在共点力作用下物体的平衡条件是f= 0.有固定转动轴的物体的平衡条件是m=0。注意:对于共点力平衡.必有 m=0。对于固定转动轴平衡,必有f=0。还要注意力的平衡和物体的平衡的区别。
4.匀变速直线运动规律:a的大小和方向一定。可以用公式和图象(s-t图象和v-t图象)描述。注意:①公式v=(v0+vt)/2只适用于匀变速直线运动.②判断初速度不为零的句变速直线运动或测定其加速度的公式为△s=at2 ,即从任一时刻开始,在连续相等的各时间间隔t内的位移差△s都相等。判断初速度为零的匀变速直线运动时,方法一;用s1:s2:s3……=1:3:5……判断(可作为充分必要条件)。方法二:同时满足△s=at2 (仅作为必要条件)和△s/s1=2/1。③利用图象处理问题时,要注意其点、线、斜率、面积等的物理意义。
5.曲线运动的规律:利用运动的合成和分解方法。平抛运动可视为水平匀速直线运动竖直方向的自由落体的合运动。
匀速圆周运动虽向心加速度的大小不变,但方向时刻在变且恒指向圆心,所以是一种变加速运动。其向心力f=mv2/r或f=mω2r,它与速度方向垂直。故只能改变物体的速度方向。向心力不是什么特殊的力,任何一种力或几种力的合力都可提供为向心力。
行星运动的规律由开普勒三定律揭示,三定律分别指明了行星运动的轨道、行星沿轨道运动时速率的变化以及周期与轨道半径的关系(r3/t2=k)。万有引力定律揭示了行星运动的本质原因,可应用来发现天体并计算天体的质量和密度。
6.振动和波动的规律:当物体受到指向平衡位置的回复力作用且阻力足够小时,物体将作机械振动。振动可分自由振动和受迫振动。当策动力的频率跟物体的固有频率相等时,将发生共振,振幅达最大。简指振动是一种变加速运动.其特点是所受外力的合力符合f=-kx,加速度符合a=-kx/m。这两个特点可作为判别一个物体是否作简谐振动的依据。简诺振动的图象是正弦(或余弦)曲线,它表示振动物体的位移随时间而变化的情况。典型的间谐振动有单摆和弹簧振子等。作简谐振动的系统的能量是守恒的,振幅越大,能量越大。
机械振动在煤质中的传播过程形成机械波。其特点是只传播振动的能量而媒质本身并不迁移.波动遵循叠加原理,能发生干涉和衍射现象。波动的任一质点的振动周期(或频率)和波源的振动周期(或频率)一致.波动有横波和纵波之分。波动图象也是正弦6或余弦)曲线,它表示某一时刻各个质点的位移。在判别质点振动方向时要注意波动方向。
7.动能定理
动能定理揭示了外力对物体所做的总功与物体动能变化间的关系。要注意:①动能定理的研究对象是质点(或单个物体)。②由动能定理可知:动力做正功使物体的动能增加z阻力做负功,使物体的动能减少。③w指作用于物体的各个力所做功的代数和,因此要注意分辨功的正负。④ek1和 ek2分别为初始状态和终了状态的动能。因此,ek2-ek1仅由初末两个运动状态决定,不涉及运动过程中的具体细节。⑤公式w=ek2- ek1为标量式,但有正负。w为正(负)表示物体的动能增加(减少)。ek2- ek1为正(负)也表示物体的动能增加(减少)。
8.机械能守恒定律
机械能守恒定律揭示了物体在只有重力(或弹力)做功的情况下,物体总的机械能保持不变及其动能和重力势能相互转化的规律。可表示为e2=e1,要注意:①该定律所研究的对象是物体系统。所谓机械能守恒,是指系统的总机械能守恒。②机械能守恒的条件:在只有重力(或弹力)做功的情况下。③el和e2是指物体系统在任意两个运动状态时的机械能,并不涉及el和e2间互相转化的具体细节.④动能定理和机械能守恒定律有一定的关系:当只有重力做功时,应用动能定理可以得机械能守恒定律。
9.动量定理
动量定理揭示了物体所受的冲量与其动量变化间的关系。要注意:①动量定理所研究的对象是质点(或单个物体、或可视为单个物体的系统)。②动量定理具有普适性,即运动轨迹不论是直线还是曲线,作用力不论是恒力还是变力(f为变力在作用时间内的平均值),几个力作用的时间不论是同时还是不同时,都适用。③f指物体所受的合外力。冲量ft的方向与动量变化m·△v的方向相同。
10.动量守恒定律
动量守恒定律揭示了物体在不受外力或所受外力的合力为零时的动量变化规律。对由两个物体组成的系统,可表达为m1v1+m2v2=m1v1'+m2v2'要注意:①系统的封闭性。动量守恒定律所研究的对象是物体系统,所谓动量守恒是指系统的总动量守恒。②动量守恒的限制性。守恒的条件是f=0。这包含几种情况:一是系统根本不受到外力;二是系统所受的合外力为零;三是系统所受的外力远比内力小,且作用时打很短;四是系统在某个方向上所受的合外力为零、③速度的相对性。公式中的速度是相对于同一参照物而言的。④时间的同时性。系统的动量守恒是指在同一段时间里物体相互作用前后而言的。⑤动量的矢量性.如果系统内物体作用前后的动量在同一直线上。则可选定正方向后用正、负号表示,将矢量运算化简为代数运算m6)n律具有普适性。
11.碰撞规律
弹性碰撞同时满足动量守恒和动能守恒,无能量损失。完全非弹性碰撞只满足动量守恒,动能损失最大。
6.功和能的关系
功是能的转化的量度。做功的过程总是伴随着能量的改变,能量的改变需通过做功来实现。功是描述物理过程的物理量,能量是描述物理状态的物理量。如果只有重力或弹力做功坝u机械能守恒。如果除重力和弹力做功外,还有其他力做功,则机械能和其他形式的能之间发生转化,但总的能量保持不变,这就是能量的转化和守恒定律。机械能守恒定律是能量守恒定律的一种特殊情况。
二、重要研究方法
1.寻求“守恒量”。物理世界千变万化,但有些物理量在一定条件下遵循守恒的规律。如力学中,有质量守恒、机械能守恒和动量守恒z电学中有电荷守恒等.由于守恒定律适用范围广。处理问题方便,因此,寻求“守恒量”已成为物理研究的一个重要方面。
2.运用等量转化的研究方法。运用这种方法,可进一步揭示相关物理量之间的联系,发现新规律.如:由重力做功使物体动能增加,可以得到机械能守恒定律的表达形式之一。
3.发散思维。多角度地研究同一物理问题。如力学中,从力的瞬时,时间积累、房间积累效果研究,分别发现了牛顿运动定律、动量定理、动能定理,从各个不同的角度揭示了物探规律;为解决问题提供了多种渠道。
三、基本解题思路
归纳起来,力学中有三把金钥匙,那么.遇到力学问题,究竟怎样选用和使用金钥匙呢?基本思路是:
1.审清题意,弄清物理过程,明确研究对象,画好两图:物理过程示意图和研究对象受力分析图。
2. 对涉及要求速度和位移的问题,先从能量观点入手分析往往会带来方便。即对各个力所做的功,物体速度的变化情况作出分析。如果研究对象是一系统,且只有重力做功,则应用机械能守恒定律解。如果研究对象是一物体,且还有其他力做功.则应用动能定理解.要注意分清正负功。选定零势能点。初末状态的机械能或动能、统一单位等问题。
3.对涉及要求时间和速度的问题,先从动量和冲量观点入手分析往往会带来方便。即对各个力的冲量、物体动量的变化情况作出分析。如果研究对象是一系统,且所受合力f=0,则应用动量守恒定律解。如果研究对象是一物体,且f≠0,则应用动量定理解。要注意选定正方向、分清动量和冲量的正负。初末状态的动量、统一单位等问题。
4. 对涉及要求加速度和时间的问题,先从牛顿运动定律入手分析往往会带来方民即对研究对象分析其运动状态和受力情况后,列出其运动方程,必要时再运用运动学公式解之。要注意分析各运动过程中物体的受力情况、选定正方向。统一单位等问题。
5.选用上述三把金钥匙解题是相对的。一切要视具体问题来定。有时需同时用之,有时可分别用之。这就需要通过解题不断总结经验教训。才能深刻领会,灵活运用。
四、重要研究方法
1.选取理想化模型和过程。这是重要的科学抽象理想化的方法,即只研究主要因素而忽略次要因素,使研究问题简化。如。质点、自由落体、单摆和弹簧振子等理想化模型和平衡、匀变速直线运动。匀速四周运动、抛体运动、简连振动等理想化物理过程。
2.解析法。通过定量分析用公式表达物理规律。解析法具有推理严密和定量分析的特点
3.图象法。通过建立坐标系表达物理量之间的变化关系。如:位移图象、速度图象、振动图象、波动图象等。图象法具有直观形象的特点。
4.隔离法。把研究对象从周围物体中隔离出来便于受力分析和处理问题。被隔离的研究对象可以是一个物体或物体的一部分,也可以是几个物体组成的系统。
5.矢量运算法。按照平行四边形法则或三角形法则进行。当物体的运动在同一直线上时,可选定一个正方向,将矢量运算转化为代数运算。选定正方向要以处理问题方便为原则,通常可规定初速度方向,加速度方向、坐标轴正方向为正方向。
6.运动的分解合成法。将复杂运动看作由几个简单运动所组成。它包括位移、速度、加速度、力的分解与合成。合成和分解要视问题的需要和实际效果进行.正交分解法是常用的方法。
五、基本解题思路
解答力学问题通常可按如下思路进行:
1.审清题意,弄清物理过程,画出示意图。
2.明确研究对象,正确受力分析,画出受力图。
3.选取坐标系,规定正方向。
4.选准物理规律,列出方程.
5.解出所求物理量的文学表达式,代入统一单位后的数据。
6.计算结果,验算讨论。
六、复习建议
通过本讲力学的复习,要求明确力学中以牛顿运动定律为核心的知识整体结构,深刻理解以力、速度、加速度、质量等为主体的重要力学概念,熟练掌握静力学、运动学和动力学中的重要规律。要求明确力学中以牛顿运动定律、动能定理和机械能守恒定律、动量定理和动量守恒定律为核心的知识体系,深刻理解功、功率、动能、势能、机械能、动量、冲量等重要概念,熟练掌握动能定理、机械能守恒定律、动量定理、动量守恒定律等重要规律,能灵活地运用三把力学金钥匙解决力学问题,不断开拓解题思路,增强解题能力。进一步了解研究力学乃至研究物理学的重要研究方法,能似明晰的思路熟练地解决有关力学问题。继续激发学习物理的兴趣,熏陶良好的学习(包括复习)习惯,培养能力,开发智力,并为后续内容的复习打下良好的基础。
1.制订复习计划
为加强计划性,提高复习效率,应当注重制订切实可行的复习计划。一般分两轮进行:第一轮要求一章一节全面细致的复习,着重抓好基础。第二轮要求深化知识,综合提高,灵活运用。要注重重点内容的专题复习,在重解题方法和技巧的灵活运用,注重解题规范化和实验技能的训练,注重科学的安排时间以提高复习效率。切忌重理论轻实际、重资料轻教材、重结论轻过程、重解题轻应用的不良倾向.
2.把握知识的深广度
要切实遵循大纲和教材,不要随意拓宽加深,注意摆脱题海,避免陷入偏、怪、难的歧途,要把握好知识的深广度。如下列内容不作要求:静摩擦系数的概念,物体的一般平衡条件和开普勒三定律等物理规律,按有效数字规则运算,用速度图象去计算问题,互换振动图象和波动图象。对矢量运算仅限于解直角三角形,对力矩平衡问题仅限于有固定转动轴的情况,对连接体问题仅限于相连物体的加速度大小和方向相同的情况,对有关向心力的计算仅限于掏心力是由一条直线上的力合成的情况,对竖直平面上的圆周运动仅限于计算最高点和最低点的有关问题.关于负功的概念,只要求明确它的物理意义。关于功率的概念,有时由于负功的出现也会遇到功率是负值的情况,则仅要求知道它的物理意义是阻力在单位时间里所做的功。关于弹性势能,只要求定性了解它的产生、与哪些因素有关、与其它能的转化,而不要求用公式进行计算。不要求用功能关系解题。关于碰撞,只研究正碰,不区分弹性碰撞和非弹性碰撞,且只讨论一维的情况。应用动量定理和动量守恒定律解题只限于一维的情况。
3. 掌握知识结构
力学所研究的对象是质点和有固定转动轴的物体。力学所研究的物理现象是平衡状态、匀变速直线运动、抛体运动、匀速圆周运动、振动和波动、反冲运动、碰撞等。力学所研究的方法及其获得的规律可分为:从力的角度考虑,有牛顿运动定律,动量定理和动量守恒定律;从能的角度考虑,有动能定理和机械能守恒定律.为此,要十分注重深化对力学概念、规律和思维方法的理解和应用。
力学从总体上可分运动学和动力学两大部分,静力学只是运动学中当速度为零(或角速度为定值)时的特殊情况。运动学所研究的是物体的运动状态,描述的是运动现象;而动力学所研究的则是改变物体运动状态的原因,即从力和能两个不同的角度揭示了运动的本质(即三把力学金钥匙)。学习力学的过程就是不断分析运动现象与揭示运动本质的过程。在总复习之时,应当充分意识到这一点,从而更好地将已学过的揭示本质的物理规律去分析和解决已学过的运动现象和尚未遇见的许多问题。
4. 要注意深化对物理概念的理解
如,关于功的概念,在初中规定功w=fs,其中s为物体在力的方向上通过的距离。在高中则将功定义为w=fscosα,即功等于力跟物体在力的方向上的位移的乘积。讨论了正功和负功的意义以及合外力所做功的计算方法。研究力做功除了力学中涉及的力外,还有电场力、磁场力、洛舍兹力等,复习时,要把它们串起来,比较它们做功的特点。在高中学习能量时,进一步揭示了功的本质,功是描述物理过程的物理量。做功总是伴随着能量的转化。关于功率的概念,讨论了平均功率、即时功率、额定功率、输出功率等概念。关于能量的概念,从初中的定性研究发展至高中的定量计算动能和重力势能。通过动能定理、机械能守恒定律,定量地揭示了功和能的关系;功是能量转化的量度,能量在转化中保持守恒.
5.要注意揭示物理规律之间的区别和内在联系
从力的角度总结出了牛顿运动定律、动量定理、动量守恒定律。从能的角度总结出了动能定理、机械能守恒定律。虽然,从不同的角度所得的规律不同,但描述的是同一物理现象,揭示的本质是一致的。当然,也有着许多不同之处,要注重通过列表等形式从研究对象、研究角度、适用范围、成立条件、矢量性、解题思路等方面加以比较,以加深对相近知识的理解。
6.要注意加强思维训练
可先以物理规律为专题训练收敛思维,归纳出运用三把力学金钥匙解题的不同的基本思路。然后,可在解同一道题时,训练发散思维,从多角度地考虑问题,防止用某一规律训练解题所造成的思维定势,从而有效地培养灵活地综合应用知识的能力.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径?:米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
三、力(常见的力、力的合成与分解)
1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。
六、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′
6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
注:
(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;
(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;
(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);
(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;
(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。
七、功和能(功是能量转化的量度)
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r<r0,f引<f斥,F分子力表现为斥力
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),
W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}
6.热力学第二定律
克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。
九、气体的性质
1.气体的状态参量:
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,
热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
十、电场
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
常见电容器〔见第二册P111〕
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。
十一、恒定电流
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系 I总=I1=I2=I3 I并=I1+I2+I3+
电压关系 U总=U1+U2+U3+ U总=U1=U2=U3
功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径?:米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
三、力(常见的力、力的合成与分解)
1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。
六、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′
6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
注:
(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;
(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;
(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);
(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;
(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。
七、功和能(功是能量转化的量度)
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r<r0,f引<f斥,F分子力表现为斥力
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),
W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}
6.热力学第二定律
克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。
九、气体的性质
1.气体的状态参量:
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,
热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
十、电场
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
常见电容器〔见第二册P111〕
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。
十一、恒定电流
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系 I总=I1=I2=I3 I并=I1+I2+I3+
电压关系 U总=U1+U2+U3+ U总=U1=U2=U3
功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询