线代题:A的伴随矩阵等于A的转置矩阵,如何证明A是可逆矩阵?

 我来答
雪承多恺
2019-06-21 · TA获得超过1205个赞
知道小有建树答主
回答量:1399
采纳率:100%
帮助的人:6.3万
展开全部
条件应该有A ≠ 0吧.
n = 2时,设A =
a b
c d
则伴随矩阵A* =
d -b
-c a
由转置A‘ = A*得a = d,b = -c.
当讨论限制为实矩阵,行列式|A| = a²+b² > 0,A可逆.
复矩阵时有反例:
1 i
-i 1
n > 2时,无论在哪个域上,命题总是成立的,证明如下.
若A的秩r(A) < n-1,伴随矩阵A*是由A的n-1阶子式构造,有A* = 0,与A ≠ 0从而转置矩阵A' ≠ 0矛盾.
若r(A) = n-1,由AA* = |A|·E = 0,及不等式r(A)+r(A*)-n ≤ r(AA*),有r(A*) ≤ 1 < r(A) = r(A').
于是r(A) < n时总有A* ≠ A'.即由A* = A'可推出A可逆.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式