泰勒公式求极限 10
1个回答
展开全部
x->0
分母
cosx = 1-(1/2)x^2 +o(x^2)
e^(x^2) =1+x^2 +o(x^2)
cosx -e^(x^2) =-(3/2)x^2 +o(x^2)
sin(x^2)= x^2+o(x^2)
( cosx- e^(x^2)) .sin(x^2) =-(3/2)x^4 +o(x^4)
分子
√(1+x^2) = 1+ (1/2)x^2 -(1/8)x^4 +o(x^4)
x^2/2 + 1 -√(1+x^2) = (1/8)x^4 +o(x^4)
//
lim(x->0) [ x^2/2 + 1 -√(1+x^2) ]/ [ ( cosx- e^(x^2)) .sin(x^2) ]
=lim(x->0) (1/8)x^4/ [ -(3/2)x^4 ]
=-1/12
分母
cosx = 1-(1/2)x^2 +o(x^2)
e^(x^2) =1+x^2 +o(x^2)
cosx -e^(x^2) =-(3/2)x^2 +o(x^2)
sin(x^2)= x^2+o(x^2)
( cosx- e^(x^2)) .sin(x^2) =-(3/2)x^4 +o(x^4)
分子
√(1+x^2) = 1+ (1/2)x^2 -(1/8)x^4 +o(x^4)
x^2/2 + 1 -√(1+x^2) = (1/8)x^4 +o(x^4)
//
lim(x->0) [ x^2/2 + 1 -√(1+x^2) ]/ [ ( cosx- e^(x^2)) .sin(x^2) ]
=lim(x->0) (1/8)x^4/ [ -(3/2)x^4 ]
=-1/12
追问
为什么分母都是o(x²)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询