高一数学12
已知圆x^2+y^2+x-6y+m=0与直线x+2y-3=0交与P、Q两点,O为坐标原点,问是否存在实数m使得OP⊥OQ?若存在,求出m的值;若不存在,说明理由。(要附上...
已知圆x^2+y^2+x-6y+m=0与直线x+2y-3=0交与P、Q两点,O为坐标原点,问是否存在实数m使得OP⊥OQ?若存在,求出m的值;若不存在,说明理由。(要附上图哦,谢谢!)
没学过联立方程组 展开
没学过联立方程组 展开
2010-07-26
展开全部
将圆方程化简为标准式有:
[x+(1/2)]^2+(y-3)^2=(37-4m)/4……………………………(1)
所以,圆心坐标为(-1/2,3)
联立直线与圆方程得到:
x^2+x+y^2-6y+m=0
x+2y-3=0
===> (2y-3)^2-(2y-3)+y^2-6y+m=0
===> 4y^2-12y+9-2y+3+y^2-6y+m=0
===> 5y^2-20y+(m+12)=0
===> y1+y2=4,y1y2=(m+12)/5
===> x1x2=(-2y1+3)(-2y2+3)=4y1y2-6(y1+y2)+9=4(m+12)/5-15
已知OP⊥OQ
则,Kop*Koq=-1
即:(y1/x1)*(y2/x2)=-1
===> y1y2+x1x2=0
===> (m+12)/5+4(m+12)/5-15=0
===> m+12-15=0
===> m=3
[x+(1/2)]^2+(y-3)^2=(37-4m)/4……………………………(1)
所以,圆心坐标为(-1/2,3)
联立直线与圆方程得到:
x^2+x+y^2-6y+m=0
x+2y-3=0
===> (2y-3)^2-(2y-3)+y^2-6y+m=0
===> 4y^2-12y+9-2y+3+y^2-6y+m=0
===> 5y^2-20y+(m+12)=0
===> y1+y2=4,y1y2=(m+12)/5
===> x1x2=(-2y1+3)(-2y2+3)=4y1y2-6(y1+y2)+9=4(m+12)/5-15
已知OP⊥OQ
则,Kop*Koq=-1
即:(y1/x1)*(y2/x2)=-1
===> y1y2+x1x2=0
===> (m+12)/5+4(m+12)/5-15=0
===> m+12-15=0
===> m=3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询