分式方程的解法是什么?
一、因式分解法:
因式分解法就是将分式方程中的各分式或部分分式的分子、分母分解因式,从而简化解题过程。
解:
将各分式的分子、分母分解因式,得
∵x-1≠0,∴两边同乘以x-1,得
检验知,它们都是原方程的根。所以,原方程的根为x1=-1,x2=0。
二、配方法:
配方法就是先把分式方程中的常数项移到方程的左边,再把左边配成一个完全平方式,进而可以用直接开平方法求解。
∴x2±6x+5=0
解这个方程,得x=±5,或x=±1。
检验知,它们都是原方程的根。所以,原方程的根是x1=5,x2=-5,x3=1,x4=-1。
扩展资料:
如果分式本身约分了,也要代入进去检验。
在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。
一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解。
参考资料来源:百度百科-分式方程
解方程依据
1、移项变号:把方程中的某些项带着前面的符号从方程的一边移到另一边,并且加变减,减变加,乘变除以,除以变乘;
2、等式的基本性质:
(1)等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。
(2)等式的两边同时乘或除以同一个不为0的数,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式(不为0)。
扩展资料
二元一次方程一般解法:
消元:将方程组中的未知数个数由多化少,逐一解决。
消元的方法有两种:
1、代入消元
例:解方程组x+y=5① 6x+13y=89②
解:由①得x=5-y③ 把③带入②,得6(5-y)+13y=89,解得y=59/7
把y=59/7带入③,得x=5-59/7,即x=-24/7
∴x=-24/7,y=59/7
这种解法就是代入消元法。
2、加减消元
例:解方程组x+y=9① x-y=5②
解:①+②,得2x=14,即x=7
把x=7带入①,得7+y=9,解得y=2
∴x=7,y=2
这种解法就是加减消元法。