将函数展开成x的幂级数?
2个回答
展开全部
f'(x)=sum(x^n,n=0,1,2,...)+sum((-2x)^n,n=0,1,2,...)
=sum(x^n+(-2x)^n, n=0,1,2,...)
f(x)=sum(x^(n+1)/(n+1) (1+ (-2)^n), n=0,1,2,...)+C
x=0时,f(0)=0,所以C=0
f(x)=sum(x^(n+1)/(n+1) (1+ (-2)^n), n=0,1,2,...)
=sum(x^n+(-2x)^n, n=0,1,2,...)
f(x)=sum(x^(n+1)/(n+1) (1+ (-2)^n), n=0,1,2,...)+C
x=0时,f(0)=0,所以C=0
f(x)=sum(x^(n+1)/(n+1) (1+ (-2)^n), n=0,1,2,...)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询