#HLWRC高数#求解不定积分∫xe^arctanx/((x^2+1)^(3/2))dx,#高等数学#最佳分部积分法需要移项?
#HLWRC高数#求解不定积分∫xe^arctanx/((x^2+1)^(3/2))dx,#高等数学#最佳分部积分法需要移项。...
#HLWRC高数#求解不定积分∫xe^arctanx/((x^2+1)^(3/2))dx,#高等数学#最佳分部积分法需要移项。
展开
2个回答
展开全部
令 x = tanu
I = ∫xe^arctanx/[(x^2+1)^(3/2)]dx = ∫tanu(secu)^2e^udu/(secu)^3
= ∫tanue^udu/secu = ∫sinue^udu = ∫sinude^u
= e^usinu - ∫e^ucosudu = e^usinu - ∫cosude^u
= e^u(sinu-cosu) - I
I = (1/2)e^u(sinu-cosu) + C = (1/2)[(x-1)/√(1+x^1)]e^arctanx + C
I = ∫xe^arctanx/[(x^2+1)^(3/2)]dx = ∫tanu(secu)^2e^udu/(secu)^3
= ∫tanue^udu/secu = ∫sinue^udu = ∫sinude^u
= e^usinu - ∫e^ucosudu = e^usinu - ∫cosude^u
= e^u(sinu-cosu) - I
I = (1/2)e^u(sinu-cosu) + C = (1/2)[(x-1)/√(1+x^1)]e^arctanx + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询