拉格朗日定理公式是什么?

 我来答
小不点聊生活
高能答主

2021-11-27 · 小不点聊生活,领悟生活。
小不点聊生活
采纳数:148 获赞数:13497

向TA提问 私信TA
展开全部

拉格朗日定理公式是:设 \(p\) 为素数,在模 \(p\) 意义下的 \(n\) 次多项式 \(f(x) = a_n\cdot x^n+\cdots+a_1\cdot x+a_0 (p\nmid a_n)\) ,那么同余方程 \(f(x)\equiv 0\pmod p\) 在模 \(p\) 意义下最多有 \(n\) 个不同的解。

证明:

对 \(n\) 使用数学归纳法。当 \(n=0\) 时,由于 \(p\not\mid a_0\) ,所以方程无解。那么当 \(n=0\) 是定理成立。

假设命题对次数小于 \(n\) 的多项式都成立。通过证明如果 \(n\) 次多项式有 \(n+1\) 个解,那么 \(n-1\) 次多项式有 \(n\) 个解来推出矛盾。

考虑次数为 \(n\) 的多项式。如果存在一个 \(n\) 次多项式 \(f(x)\) ,使得 \(f(x)\equiv 0\pmod p\) 在模 \(p\) 意义下有 \(n+1\) 个不同解 \(x_0, x_1,\dots,x_n\) 。

因式分解可得 \(f(x)=(x-x_0)\cdot g(x)\) ,其中 \(g(x)\) 在模 \(p\) 意义下是一个至多 \(n-1\) 次的多项式。所以对任意 \(x_i (1\leq i\leq n)\) 。

有:\[(x_i-x_0)g(x_i)\equiv f(x_i)\equiv 0\pmod p\],而 \(x_i\not\equiv x_0\pmod p\) ,所以 \(g(x_i)\equiv 0\pmod p\) ,从而 \(g(x)=0\pmod p\) 在模 \(p\) 意义下至少有 \(n\) 个解,与归纳假设矛盾。

所以定理对 \(n\) 次多项式也成立。



推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式