幂函数的性质是什么呢?

 我来答
鹏远文化01
2022-03-29 · TA获得超过193个赞
知道答主
回答量:61
采纳率:0%
帮助的人:9783
展开全部

幂函数的性质是幂函数的图像一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图像最多只能同时出现在两个象限内。

幂函数(power function)是基本初等函数之一。

一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0 、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。


幂函数的正值性质

当α>0时,幂函数y=xα有下列性质

a、图像都经过点(1,1)(0,0)。

b、函数的图像在区间[0,+∞)上是增函数

c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0(函数值递增)。

幂函数的负值性质

当α<0时,幂函数y=xα有下列性质

a、图像都通过点(1,1)。

b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。

c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。

娱乐我知晓哟

2022-03-23 · 专注各种娱乐,欢迎一起探讨
娱乐我知晓哟
采纳数:1346 获赞数:1000370

向TA提问 私信TA
展开全部

性质:

一、正值性质

当α>0时,幂函数y=xα有下列性质:

1、图像都经过点(1,1)(0,0)。

2、函数的图像在区间[0,+∞)上是增函数。

3、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0(函数值递增)。

二、负值性质

当α<0时,幂函数y=xα有下列性质:

1、图像都通过点(1,1)。

2、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。

幂函数的特性

对于α的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果

,q和p都是整数,则

,如果q是奇数,函数的定义域是R;如果q是偶数,函数的定义域是[0,+∞)。

当指数α是负整数时,设α=-k,则

,显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

α小于0时,x不等于0;α的分母为偶数时,x不小于0;α的分母为奇数时,x取R。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式