求数学高手帮忙cos(2π/7)+cos(4π/7))+cos(6π/7)=?(化简求值)
1个回答
展开全部
cos(2π/7)+cos(4π/7)+cos(6π/7)
=[sin(2π/7)cos(2π/7)+sin(2π/7)cos(4π/7)+sin(2π/7)cos(6π/7)]/sin(2π/7)
(下面用积化和差)
=1/2[sin(4π/7)+sin(6π/7)-sin(2π/7)+sin(8π/7)-sin(4π/7)]/sin(2π/7)
=1/2[sin(6π/7)-sin(2π/7)+sin(8π/7)]/sin(2π/7)
=1/2[-sin(2π/7)]/sin(2π/7)
=-1/2
=[sin(2π/7)cos(2π/7)+sin(2π/7)cos(4π/7)+sin(2π/7)cos(6π/7)]/sin(2π/7)
(下面用积化和差)
=1/2[sin(4π/7)+sin(6π/7)-sin(2π/7)+sin(8π/7)-sin(4π/7)]/sin(2π/7)
=1/2[sin(6π/7)-sin(2π/7)+sin(8π/7)]/sin(2π/7)
=1/2[-sin(2π/7)]/sin(2π/7)
=-1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询