往返于南京和上海之间的列车沿途要停靠镇江,常州,无锡苏州四站,问铁路部门要为这趟列车准备几种车票?
展开全部
30种车票。
这是一个的排列问题
1、中途站共有4站,共6站,包括起止站。从一个车站到另外5个车站需要5张不同的车票,所以可以计算出车票的数量。
2、这两站的票价是一样的,所以车票的数量是车票数量的一半。
解:
(1)4+2=6(个);
6×(6-1)=6×5=30(种);
(2)30÷2=15(种);
答:铁路部门要为这趟列车准备30种车票,这些车票中有15种不同的票价.
注意:本题中由A站到B站和由B站到A站是不同的车票,但是相同的票价。
扩展资料:
二项式定理公式:
加法和乘法的两个原理,贯穿始终的定律。顺序无关的是组成,顺序是排列。
两个公式,两个性质,两个想法,两种方法。总结排列组合,应用问题必须转化。
排列和组合在一起,选择第二行是常识。特殊的元素和地点,首先要多注意考虑。
不重,不思念,多想,捆绑是窍门。排列和组合身份,定义证明建模尝试。
论二项式定理,中国阳辉三角。两个性质,两个公式,函数赋值变换。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询