勾股定理是谁提出的?

 我来答
格调aXn
高粉答主

2022-08-30 · 说的都是干货,快来关注
知道大有可为答主
回答量:7725
采纳率:100%
帮助的人:211万
展开全部

公元前11世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。

到公元3世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中也证明了勾股定理。

西方最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。所以在西方,勾股定理称为“毕达哥拉斯定理”。

关于勾股定理的名称,在我国,以前叫毕达哥拉斯定理,这是随西方数学传入时翻译的名称。20世纪50年代,学术界曾展开过关于这个定理命名的讨论,最后用“勾股定理”,得到教育界和学术界的普遍认同。

1993年,全国自然科学名词审定委员会公布数学名词,确定这一定理的汉文名称为勾股定理,其对应的英文名是Pythagoras theorem,注释中说:“又称‘毕达哥拉斯定理’。曾用名‘商高定理’.”至此,“勾股定理”成为我国确立的标准名称.。

扩展资料:

一、定义

在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是  和  ,斜边长度是  ,那么可以用数学语言表达:

勾股定理是余弦定理中的一个特例。

二、意义

1.勾股定理的证明是论证几何的发端; 

2.勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理; 

3.勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;

4.勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;

5.勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。

1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。

参考资料:百度百科-勾股定理

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式