不定积分∫(xcosx)/sin²x dx等于多少?
1个回答
展开全部
∫[xcosx/(sinx)^2]dx
=∫[x/(sinx)^2]d(sinx)
=-∫xd(1/sinx)
=-x/sinx+∫(1/sinx)dx
=-x/sinx+∫[sinx/(sinx)^2]dx
=-x/sinx-∫[1/(sinx)^2]d(cosx)
=-x/sinx-(1/2)∫{(1+cosx+1-cosx)/[(1+cosx)(1-cosx)]}d(cosx)
=-x/sinx-(1/2)∫[1/(1-cosx)]d(cosx)-(1/2)∫[1/(1+cosx)]d(cosx)
=-x/sinx+(1/2)ln(1-cosx)-(1/2)ln(1+cosx)+C
=∫[x/(sinx)^2]d(sinx)
=-∫xd(1/sinx)
=-x/sinx+∫(1/sinx)dx
=-x/sinx+∫[sinx/(sinx)^2]dx
=-x/sinx-∫[1/(sinx)^2]d(cosx)
=-x/sinx-(1/2)∫{(1+cosx+1-cosx)/[(1+cosx)(1-cosx)]}d(cosx)
=-x/sinx-(1/2)∫[1/(1-cosx)]d(cosx)-(1/2)∫[1/(1+cosx)]d(cosx)
=-x/sinx+(1/2)ln(1-cosx)-(1/2)ln(1+cosx)+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询