怎样分别排列还是组合
1个回答
展开全部
问题一:数学中的排列和组合怎么区别 所谓的排列是指从给定个数的元素中取出指定个数的元素再进行排序。组合就是指从给定个数的元素中仅仅在取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。
从n个人里任意找出m(m 问题二:排列和组合有什么区别? 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合.
(一)两个基本原理是排列和组合的基础
(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法.
(2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.
这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.
这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.
(二)排列和排列数
(1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.
从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法.
(2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列
当m=n时,为全排列Pnn=n(n-1)(n-1)…3・2・1=n!
(三)组合和组合数
(1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n个不同元素中取出m个元素的一个组合.
从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合.
(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个
这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的.
问题三:请问排列和组合如何区分? 加法原理----做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。每一种方法都能够直接达成目标。
2乘法原理----做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。
3注意
区分两个原理。要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此使用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理。
完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来。
问题四:如何区分排列和组合的有序无序?(什么情况用排列?什么情况用组合?弄不清) 不管是排列还是组合,首先你都得先选出来。。。这就是组合
做完这一步之后,如果你发现题目要求的还没有完成的话,那就得继续做,这就是排列了
从n个人里任意找出m(m 问题二:排列和组合有什么区别? 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合.
(一)两个基本原理是排列和组合的基础
(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法.
(2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.
这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.
这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.
(二)排列和排列数
(1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.
从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法.
(2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列
当m=n时,为全排列Pnn=n(n-1)(n-1)…3・2・1=n!
(三)组合和组合数
(1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n个不同元素中取出m个元素的一个组合.
从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合.
(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个
这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的.
问题三:请问排列和组合如何区分? 加法原理----做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。每一种方法都能够直接达成目标。
2乘法原理----做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。
3注意
区分两个原理。要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此使用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理。
完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来。
问题四:如何区分排列和组合的有序无序?(什么情况用排列?什么情况用组合?弄不清) 不管是排列还是组合,首先你都得先选出来。。。这就是组合
做完这一步之后,如果你发现题目要求的还没有完成的话,那就得继续做,这就是排列了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京康思
2018-09-20 广告
2018-09-20 广告
万用表不仅可以用来测量被测量物体的电阻,交直流电压还可以测量直流电压。甚至有的万用表还可以测量晶体管的主要参数以及电容器的电容量等。充分熟练掌握万用表的使用方法是电子技术的很基本技能之一。常见的万用表有指针式万用表和数字式万用表。指针式多用...
点击进入详情页
本回答由北京康思提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询