n次根号下n的阶乘的极限是n趋于无穷大。
解答过程如下:
扩展资料
极限的性质:
1、ε的任意性 正数ε可以任抄意地变小,说明xn与常数a可以接近到任何不断地靠近的程度。但是,尽管ε有其任2113意性,但一经给出,就被暂时地确定下来,以便靠它用函数规律来求出N;
又因为ε是任意小的正数,所以ε/2 、3ε 、ε2等也都在任意小的正数范围,因此可用它们的数值近似代替ε。同时,正由于ε是任意小的正数,我们可以限定ε小于一个某一个确定的正数。
2、N的相应性 一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖性。