等价无穷小代换,只要x→∞时,函数内部是无穷小即可吗?
展开全部
等价无穷小代换,只要x→∞时,函数内部是无穷小即可。比如,x→∞时,sin(1/x)~1/x。
被代换的量,在取极限的时候极限值为0;被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
扩展资料:
当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。
无穷小量是以0为极限的函数,而不同的无穷小量收敛于0的速度有快有慢。因此两个无穷小量之间又分为高阶无穷小 ,低阶无穷小,同阶无穷小,等价无穷小。
参考资料来源:百度百科--等价无穷小
参考资料来源:百度百科--无穷小量
2023-01-07
展开全部
还需要考虑无穷小的阶数。
遇到极限的不定式问题,首选的还是洛必达法则和泰勒公式。
遇到极限的不定式问题,首选的还是洛必达法则和泰勒公式。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询