排列组合问题的类型及解答策略
1、捆绑法又称为相邻问题
将相邻元素放在一起,当作一个元素,参与排列,然后再对相邻元素进行排列。
例1、(2021·河北张家口市)某班优秀学习小组有甲乙丙丁戊共5人,他们排成一排照相,则甲乙二人相邻的排法种数为( )
A.24 B.36 C.48 D.60
2、不相邻问题插空法
元素不相邻问题,可先把无位置要求的几个元素全排列,再把规定相离的几个元素插入上述几个元素间的空位(包含两端).
例2、(2020·河北石家庄市·石家庄二中高二期中)省实验中学为预防秋季流感爆发,计划安排学生在校内进行常规体检,共有3个检查项目,需要安排在3间空教室进行检查,学校现有一排6间的空教室供选择使用,但是为了避免学生拥挤,要求作为检查项目的教室不能相邻,则共有( )种安排方式.
A.12 B.24 C.36 D.48
3、平均分组问题:先分组再除以分组排列数
例3、6本不同的书平均分成3堆,每堆2本共有多少种分法?
4、分组分配问题
解题思路:分组是组合问题,分配是排列问题;
分组方法:①完全均匀分组,分组后除以组数的阶乘②部分均匀分组,有m组元素个数相同,则分组后除以m!③完全非均匀分组,只需分组即可。
分配方法:①相同元素分配,常用“挡板法”②不同元素分配,分步乘法计数原理,先分组后分配③有限制条件的分配,常用分类求解。
即先分组再分配的问题,先分组的过程中若产生平均分组问题,要除以平均分组的排列数(同方法3例3);最后再以分的组数进行排列。
例4、(2020·全国)疫情期间,上海某医院安排5名专家到3个不同的区级医院支援,每名专家只去一个区级医院,每个区级医院至少安排一名专家,则不同的安排方法共有( )
A.60种 B.90种 C.150种 D.240种
解:5名专家到3个不同的区级医院,分为1,2,2和1,1,3两种情况;