排列组合问题的类型及解答策略

 我来答
天蝎竹芳馨8L
2022-12-30 · 超过43用户采纳过TA的回答
知道小有建树答主
回答量:411
采纳率:100%
帮助的人:5.7万
展开全部

1、捆绑法又称为相邻问题

将相邻元素放在一起,当作一个元素,参与排列,然后再对相邻元素进行排列。

例1、(2021·河北张家口市)某班优秀学习小组有甲乙丙丁戊共5人,他们排成一排照相,则甲乙二人相邻的排法种数为( )

A.24 B.36 C.48 D.60

2、不相邻问题插空法

元素不相邻问题,可先把无位置要求的几个元素全排列,再把规定相离的几个元素插入上述几个元素间的空位(包含两端).

例2、(2020·河北石家庄市·石家庄二中高二期中)省实验中学为预防秋季流感爆发,计划安排学生在校内进行常规体检,共有3个检查项目,需要安排在3间空教室进行检查,学校现有一排6间的空教室供选择使用,但是为了避免学生拥挤,要求作为检查项目的教室不能相邻,则共有( )种安排方式.

A.12 B.24 C.36 D.48

3、平均分组问题:先分组再除以分组排列数

例3、6本不同的书平均分成3堆,每堆2本共有多少种分法?

4、分组分配问题

解题思路:分组是组合问题,分配是排列问题;

分组方法:①完全均匀分组,分组后除以组数的阶乘②部分均匀分组,有m组元素个数相同,则分组后除以m!③完全非均匀分组,只需分组即可。

分配方法:①相同元素分配,常用“挡板法”②不同元素分配,分步乘法计数原理,先分组后分配③有限制条件的分配,常用分类求解。

即先分组再分配的问题,先分组的过程中若产生平均分组问题,要除以平均分组的排列数(同方法3例3);最后再以分的组数进行排列。

例4、(2020·全国)疫情期间,上海某医院安排5名专家到3个不同的区级医院支援,每名专家只去一个区级医院,每个区级医院至少安排一名专家,则不同的安排方法共有( )

A.60种 B.90种 C.150种 D.240种

解:5名专家到3个不同的区级医院,分为1,2,2和1,1,3两种情况;

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式