设N阶实方阵A不等于O,且A的伴随阵等于A的转置矩阵,证明A可逆.

 我来答
舒适还明净的海鸥i
2022-09-06 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:69.7万
展开全部
由A* A= |A|E,A* = A'
得 A'A = |A|E.
再由A不等于0,设 aij≠0.
则比较 A'A = |A|E 第j行第j列元素有
a1j^2+a2j^2+...+aij^2+...+anj^2 = |A|
而A是实方阵且 aij≠0.
所以 |A| ≠ 0.
所以 A 可逆.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式