求导公式怎样推导的?
展开全部
∫(secx)^3dx
=∫secx(secx)^2dx
=∫secxdtanx
=secxtanx-∫tanxdsecx
=secxtanx-∫(tanx)^2secxdx
=secxtanx-∫((secx)^2-1)secxdx
=secxtanx-∫(secx)^3dx+∫secxdx
=secxtanx+ln│secx+tanx│--∫(secx)^3dx
所以∫(secx)^3dx=1/2(secxtanx+ln│secx+tanx│)
=∫secx(secx)^2dx
=∫secxdtanx
=secxtanx-∫tanxdsecx
=secxtanx-∫(tanx)^2secxdx
=secxtanx-∫((secx)^2-1)secxdx
=secxtanx-∫(secx)^3dx+∫secxdx
=secxtanx+ln│secx+tanx│--∫(secx)^3dx
所以∫(secx)^3dx=1/2(secxtanx+ln│secx+tanx│)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询