数学建模有哪些方法?
展开全部
问题一:数学建模中综合评价的方法有哪些? 综合评价有许多不同的方法,如综合指数法、TOPSIS法、层次分析法、RSR法、模糊综合评价法、灰色系统法等,这些方法各具特色,各有利弊。
综合评价的一般步骤
1.根据评价目的选择恰当的评价指标,这些指标具有很好的代表性、区别性强,而且往往可以测量,筛选评价指标主要依据专业知识,即根据有关的专业理论和实践,来分析各评价指标对结果的影响,挑选那些代表性、确定性好,有一定区别能力又互相独立的指标组成评价指标体系。
2.根据评价目的,确定诸评价指标在对某事物评价中的相对重要性,或各指标的权重; 3.合理确定各单个指标的评价等级及其界限;
4.根据评价目的,数据特征,大中选择适当的综合评价方法,并根据已掌握的历史资料,建立综合评价模型;
5.确定多指标综合评价的等级数量界限,在对同类事物综合评价的应用实践中,对选用的评价模型进行考察,并不断修改补充,使之具有一定的科学性、实用性与先进性,然后推广应用。
问题二:参加数学建模有哪些必学的算法 1. 蒙特卡洛方法:
又称计算机随机性模拟方法,也称统计实验方法。可以通过模拟来检验自己模型的正确性。
2. 数据拟合、参数估计、插值等数据处理
比赛中常遇到大量的数据需要处理,而处理的数据的关键就在于这些方法,通常使用matlab辅助,与图形结合时还可处理很多有关拟合的问题。
3. 规划类问题算法:
包括线性规划、整数规划、多元规划、二次规划等;竞赛中又很多问题都和规划有关,可以说不少的模型都可以归结为一组不等式作为约束条件,几个函数表达式作为目标函数的问题,这类问题,求解是关键。
这类问题一般用lingo软件就能求解。
4. 图论问题:
主要是考察这类问题的算法,包括:Dijkstra、Floyd、Prime、Bellman-Ford,最大流、二分匹配等。熟悉ACM的人来说,应该都不难。
5. 计算机算法设计中的问题:
算法设计包括:动态规划、回溯搜索、分治、分支定界法(求解整数解)等。
6. 最优化理论的三大非经典算法:
a) 模拟退火法(SA)
b) 神经网络(NN)
c) 遗传算法(GA)
7. 网格算法和穷举算法
8. 连续问题离散化的方法
因为计算机只能处理离散化的问题,但是实际中数据大多是连续的,拦启因此需要将连续问题离散化之后再用计算机求解。
如:差分代替微分、求和代替积分等思想都是把连续问题离散化的常用方法。
9. 数值分析方法
主要研究各种求解数学问题的数值计算方法,特别是适用于计算机实现的方法与算法。
包括:函数的数值逼近、数值微分与数值积分、非线性返程的数值解法、数值代数、常微分方程数值解等。
主要应用matlab进行求解。
10. 图像处理算法
这部分主要是使用matlab进行滚衡山图像处理。
包括展示图片,进行问题解决说明等。
问题三:数学建模有哪些常用方法 积累算法跟模型,做做真题,无他
综合评价的一般步骤
1.根据评价目的选择恰当的评价指标,这些指标具有很好的代表性、区别性强,而且往往可以测量,筛选评价指标主要依据专业知识,即根据有关的专业理论和实践,来分析各评价指标对结果的影响,挑选那些代表性、确定性好,有一定区别能力又互相独立的指标组成评价指标体系。
2.根据评价目的,确定诸评价指标在对某事物评价中的相对重要性,或各指标的权重; 3.合理确定各单个指标的评价等级及其界限;
4.根据评价目的,数据特征,大中选择适当的综合评价方法,并根据已掌握的历史资料,建立综合评价模型;
5.确定多指标综合评价的等级数量界限,在对同类事物综合评价的应用实践中,对选用的评价模型进行考察,并不断修改补充,使之具有一定的科学性、实用性与先进性,然后推广应用。
问题二:参加数学建模有哪些必学的算法 1. 蒙特卡洛方法:
又称计算机随机性模拟方法,也称统计实验方法。可以通过模拟来检验自己模型的正确性。
2. 数据拟合、参数估计、插值等数据处理
比赛中常遇到大量的数据需要处理,而处理的数据的关键就在于这些方法,通常使用matlab辅助,与图形结合时还可处理很多有关拟合的问题。
3. 规划类问题算法:
包括线性规划、整数规划、多元规划、二次规划等;竞赛中又很多问题都和规划有关,可以说不少的模型都可以归结为一组不等式作为约束条件,几个函数表达式作为目标函数的问题,这类问题,求解是关键。
这类问题一般用lingo软件就能求解。
4. 图论问题:
主要是考察这类问题的算法,包括:Dijkstra、Floyd、Prime、Bellman-Ford,最大流、二分匹配等。熟悉ACM的人来说,应该都不难。
5. 计算机算法设计中的问题:
算法设计包括:动态规划、回溯搜索、分治、分支定界法(求解整数解)等。
6. 最优化理论的三大非经典算法:
a) 模拟退火法(SA)
b) 神经网络(NN)
c) 遗传算法(GA)
7. 网格算法和穷举算法
8. 连续问题离散化的方法
因为计算机只能处理离散化的问题,但是实际中数据大多是连续的,拦启因此需要将连续问题离散化之后再用计算机求解。
如:差分代替微分、求和代替积分等思想都是把连续问题离散化的常用方法。
9. 数值分析方法
主要研究各种求解数学问题的数值计算方法,特别是适用于计算机实现的方法与算法。
包括:函数的数值逼近、数值微分与数值积分、非线性返程的数值解法、数值代数、常微分方程数值解等。
主要应用matlab进行求解。
10. 图像处理算法
这部分主要是使用matlab进行滚衡山图像处理。
包括展示图片,进行问题解决说明等。
问题三:数学建模有哪些常用方法 积累算法跟模型,做做真题,无他
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询