周期函数一定有最小正周期吗?

 我来答
爱吃脖子
高粉答主

2022-09-05 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:168
采纳率:100%
帮助的人:5.1万
展开全部

不是所有周期函数都有最小正周期。周期函数f(x)的周期T是与x无关的非零常数,存在没有最小正周期的函数,而这个函数就是狄利克雷函数

狄利克雷函数(是一个定义在实数范围上、值域不连续的函数。狄利克雷函数的图像以Y轴为对称轴,是一个偶函数,它处处不连续,处处极限不存在,不可黎曼积分。

实数域上的狄利克雷(Dirichlet)函数表示为:

(k,j为整数)也可以简单地表示分段函数的形式D(x)= 0(x是无理数)或1(x是有理数)

假设f(x)=0,x为无理数

f(x)=1,x为有理数

由有理数和无理数的运算法则可以知道,所有的有理数与有理数的和都是有理数,与无理数的和都是无理数。

那么对于这个函数而言,取T为任意有理数,就都满足了,无论x是有理数还是无理数,这就意味着狄利克雷就是一个周期函数。它的最小正周期是最小的有理数,而显然是不存在最小的有理数的,因而这个函数也就没有最小正周期了。

扩展资料

对于函数f(x),如果存在一个不为0的正数T,使得当x取定义域中的每一个数时,f(x+T)=f(x)总成立,那么称f(x)是周期函数,T称为这个函数的周期。如果函数f(x的所有周期中存在最小值T0,称T0为周期函数f(x)的最小正周期。

周期函数的性质共分以下几个类型:

1、若T(≠0)是f(x)的周期,则-T也是f(x)的周期。

2、若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。

3、若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。

4、若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。

5、若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。

6、周期函数f(x)的定义域M必定是至少一方无界的集合。

参考资料来源:百度百科-狄利克雷函数

参考资料来源:百度百科-周期函数

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式