周期函数一定有最小正周期吗?
不是所有周期函数都有最小正周期。周期函数f(x)的周期T是与x无关的非零常数,存在没有最小正周期的函数,而这个函数就是狄利克雷函数。
狄利克雷函数(是一个定义在实数范围上、值域不连续的函数。狄利克雷函数的图像以Y轴为对称轴,是一个偶函数,它处处不连续,处处极限不存在,不可黎曼积分。
实数域上的狄利克雷(Dirichlet)函数表示为:
(k,j为整数)也可以简单地表示分段函数的形式D(x)= 0(x是无理数)或1(x是有理数)
假设f(x)=0,x为无理数
f(x)=1,x为有理数
由有理数和无理数的运算法则可以知道,所有的有理数与有理数的和都是有理数,与无理数的和都是无理数。
那么对于这个函数而言,取T为任意有理数,就都满足了,无论x是有理数还是无理数,这就意味着狄利克雷就是一个周期函数。它的最小正周期是最小的有理数,而显然是不存在最小的有理数的,因而这个函数也就没有最小正周期了。
扩展资料
对于函数f(x),如果存在一个不为0的正数T,使得当x取定义域中的每一个数时,f(x+T)=f(x)总成立,那么称f(x)是周期函数,T称为这个函数的周期。如果函数f(x的所有周期中存在最小值T0,称T0为周期函数f(x)的最小正周期。
周期函数的性质共分以下几个类型:
1、若T(≠0)是f(x)的周期,则-T也是f(x)的周期。
2、若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。
3、若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。
4、若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。
5、若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。
6、周期函数f(x)的定义域M必定是至少一方无界的集合。
参考资料来源:百度百科-狄利克雷函数
参考资料来源:百度百科-周期函数