一次项是什么,二次项是什么
未知数是几次方就是几次项,比如5x^2,x^2就是二次项,二次项系数就是5。
“次”表示相乘的,如x是一次,xy、x的平方都是两次,xyz、x的立方是三次,以此类推……“项”表示相加的,如x是一项,x+y、x+xy、x+x^2都是二项,x+y+z、xy+xyz+x^3都是三项,以此类推……(x^3表示x的立方,x^2表示x的方)
“元”表示未知数的个数,如x、y都是一元,x+y、xy、x/y都是二元,x+y+z、xyz、xy+z都是三元,以此类推……
扩展资料
相关算法:
已知一元多项式环F[x]中两个不等于零的多项式ƒ(x)与g(x),用g(x)除ƒ(x)得商式q1(x)、余式r1(x)。若r1(x)=0,则g(x)就是ƒ(x)与g(x)的一个最大公因式。
若 r1(x)≠0,则用 r1(x)除 g(x)得商式q2(x)、余式r2(x)。若r2(x)=0,则r1就是ƒ(x)与g(x)的一个最大公因式。否则,如此辗转相除下去,余式的次数不断降低,经有限s次之后,必有余式为零次(即零次多项式)或余式为零(即零多项式)。
若最终余式结果为零次多项式,则原来f(x)与g(x)互素;若最终余式结果为零多项式,则原来f(x)与g(x)的最大公因式是最后一次带余除法的是除式。
利用辗转相除法的算法,可将ƒ(x)与g(x)的最大公因式rs(x)表成ƒ(x)和g(x)的组合,而组合的系数是F上的多项式。
如果ƒ(x)与g(x)的最大公因式是零次多项式,那么称ƒ(x)与g(x)是互素的。最大公因式和互素概念都可以推广到几个多项式的情形。
如果F[x]中的一个次数不小于1的多项式ƒ(x),不能表成 F[x] 中的两个次数较低的多项式的乘积,那么称ƒ(x)是F上的一个不可约多项式。
任一多项式都可分解为不可约多项式的乘积。
形如 Pn(x)=a(n)x^n+a(n-1)x^(n-1)+…+a(1)x+a(0)的函数,叫做多项式函数,它是由常数与自变量x经过有限次乘法与加法运算得到的。显然,当n=1时,其为一次函数y=kx+b,当n=2时,其为二次函数y=ax^2+bx+c。
2024-09-23 广告