微分方程XY'-YlnY=0的通解为??

 我来答
舒适还明净的海鸥i
2022-10-05 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:70.2万
展开全部
xy'-ylny=0
dy/dx=(ylny)/x
dy/(ylny)=dx/x
两边积分
ln(lny)=lnx+lnC
lny=Cx
y=e^(Cx)
(1)取常数为lnC是为了使最后的结果更简洁
(2)两边积分时是ln(lny)与lnx,不需要写成ln|lny|,ln|x|,6,XY'-YlnY=0
XY' = YlnY
dY/dX = YlnY/X
dY/YlnY = dX/X
积分(1/YlnY)dY = ln|x|
积分(1/lnY)dlnY = ln|x|
ln|ln|Y|| = ln|x| + .ln|C|
ln|Y| = Cx
Y = 正负e^Cx,1,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式