不定积分如何求?
三种方式计算不定积分∫x√(x+2)dx。
- 主要内容:
通过根式换元、分项凑分以及分部积分法等相关知识,介绍不定积分∫x√(x+2)dx的三种计算方法和步骤。
- 根式换元法:
设√(x+2)=t,则x=(t^2-2),代入得:
∫x√(x+2)dx
=∫t*(t^2-2)d(t^2-2),
=2∫t^2*(t^2-2)dt,
=2∫(t^4-2t^2)dt,
=2/5*t^5-4/3*t^3+C,
=2/5*(x+2)^(5/2)-4/3*(x+2)^(3/2)+C,
- 根式部分凑分法
∫x√(x+2)dx
=∫x√(x+2)d(x+2),
=2/3∫xd(x+2)^(3/2),
=2/3*x(x+2)^(3/2)- 2/3∫(x+2)^(3/2)dx,
=2/3*x(x+2)^(3/2)- 4/3∫(x+2)^(3/2)d(x+2),
=2/3*x(x+2)^(3/2)- 4/15*(x+2)^(5/2)+C,
- 整式部分凑分法
A=∫x√(x+2)dx,
=(1/2)∫√(x+2)dx^2,
=(1/2)x^2√(x+2)-(1/2)∫x^2d√(x+2),
=(1/2)x^2√(x+2)-(1/4)∫x^2/√(x+2)dx,
=(1/2)x^2√(x+2)-(1/4)∫[x(x+2)-2*(x+2)+4]/√(x+2)dx,
=(1/2)x^2√(x+2)-(1/4)A+1/2∫√(x+2)dx-∫dx/√(x+2),
即:(5/4)A=(1/2)x^2√(x+2)+1/2∫√(x+2)dx-2∫dx/2√(x+2),
A=(2/5)x^2√(x+2)+2/5∫√(x+2)d(x+2)-8/5√(x+2),
A=(2/5)x^2√(x+2)+4/15(x+2)^(3/2)-8/5*√(x+2)+C。
- 不定积分概念
设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。
其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。
- 不定积分的计算
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
不定积分的主要计算方法有:凑分法、公式法、第一类换元法、第二类换元法、分部积分法和泰勒公式展开近似法等。
一、积分公式法
直接利用积分公式求出不定积分。
二、换元积分法
换元积分法可分为第一类换元法与第二类换元法。
1、第一类换元法(即凑微分法)
通过凑微分,最后依托于某个积分公式。进而求得原不定积分。
2、注:第二类换元法的变换式必须可逆,并且在相应区间上是单调的。
第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换元手段有两种:
(1) 根式代换法,
(2) 三角代换法。
在实际应用中,代换法最常见的是链式法则,而往往用此代替前面所说的换元。
三、分部积分法
设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu,两边积分,得分部积分公式:∫udv=uv-∫vdu ⑴。
称公式⑴为分部积分公式。如果积分∫vdu易于求出,则左端积分式随之得到。
分部积分公式运用成败的关键是恰当地选择u,v。
扩展资料:
牛顿-莱布尼茨公式:
定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。这个重要理论就是牛顿-莱布尼兹公式,它的内容是:
如果f(x)是[a,b]上的连续函数,并且有F′(x)=f(x),那么
即一个定积分式的值,就是原函数在上限的值与原函数在下限的值的差。
这个理论,揭示了积分与黎曼积分本质的联系。因此,牛顿-莱布尼兹公式也被称作微积分基本定理。
参考资料来源:百度百科-不定积分