反函数性质

 我来答
博文教育问答
2022-11-14 · TA获得超过684个赞
知道小有建树答主
回答量:1703
采纳率:99%
帮助的人:23.7万
展开全部

反函数性质如下:

1、函数f(x)与它的反函数f-1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称。

2、函数存在反函数的充要条件是,函数的定义域与值域是一一映射。

3、一个函数与它的反函数在相应区间上单调性一致。

4、大部分偶函数不存在反函数(当函数y=f(x),定义域是[0]且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为[0])。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。

5、一段连续的函数的单调性在对应区间内具有一致性。

6、严增(减)的函数一定有严格增(减)的反函数。

7、反函数是相互的且具有唯一性。

8、定义域、值域相反对应法则互逆(三反)。

9、反函数的导数关系:如果x=f(y)在开区间I上严格单调,可导,且f'(y)0,那么它的反函数y=f-1(x)在区间S={xlx=f(y),yEI}内也可导。

10、y=x的反函数是它本身。

反函数的定义

一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y) 。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式