已知函数f(x)=x㏑x(x∈(0,正无穷)),求f(x)的单调区间?
1个回答
展开全部
x>0 单调递增,x,1,原函数的导数 f‘(x)=lnx+1 ,当x>1/e 的时候,f‘(x)>0,
当 0 所以原函数 单增区间 (1/e,∝)
单减区间(0,1/e),2,f(x)=x㏑定义域是(0,正无穷)
因为f`(x)=lnx+1
当f`(x)=lnx+1>0时,即lnx>-1 即 lnx>ln1/e
所以x>1/e
所以 f(x)在(1/e,正无穷)上是增函数
f(x)在(0,1/e)上是减函数,2,f‘=lnx+x*(1/x)=lnx+1
令f'>=0 得:x>=1/e
所以:单调增区间【1/e,正无穷】
单调减区间(0,1/e】,1,
当 0 所以原函数 单增区间 (1/e,∝)
单减区间(0,1/e),2,f(x)=x㏑定义域是(0,正无穷)
因为f`(x)=lnx+1
当f`(x)=lnx+1>0时,即lnx>-1 即 lnx>ln1/e
所以x>1/e
所以 f(x)在(1/e,正无穷)上是增函数
f(x)在(0,1/e)上是减函数,2,f‘=lnx+x*(1/x)=lnx+1
令f'>=0 得:x>=1/e
所以:单调增区间【1/e,正无穷】
单调减区间(0,1/e】,1,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询