外接球的半径是怎么算的?

 我来答
帐号已注销
2022-12-24 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:168万
展开全部

1、外接球。

边长为a的正四面体可以看成是边长是(√2/2)a的正方体截出来的,则其外接球直径是正方体边长的√3倍。

2、内切球半径。

设正四面体是S-ABC,过点S作高线SH交底面ABC于点H,则内切球球心在SH上,设其半径是R,则主要就产生四个四面体:O-SAB、O-SBC、O-SCA、O-ABC,这四个四面体的高都是内切球的半径R,底面都是以a为边长是正三角形,利用等体积法可以求出内切球半径R的值。

3、正方体的中心O到8个顶点的距离相等,也就是到正四面体四个顶点距离相等,那么正四面体的中心和O重合。

设正方体边长为2,那么体对角线为2√3,所以中心O到每个顶点距离为√3,这是正四面体外接球的半径R;

而根据图中建立的坐标系,O(1,1,1),面A1BD方程为x+y+z-2=0,所以O到面A1BD距离;

d=|1*1+1*1+1*1-2|/√(1+1+1)=1/√3.这是内切球的半径r,那么r:R=1/√3:√3=1:3、

扩展资料:

在中学的立体几何中,有关多边形内切球和多边形外接球半径的计算题目,占有重要的地位,现在来简述一下这些球的基本性质。

多边形内切球球心是多边形一切二面角平分面的交点。

多边形外接球球心O的位置可用下述方法之一定出来:

1、点O是通过多面体非平行平面外接圆的圆心并垂直于非平行平面的两条直线的交点;

2、点O是通过多面体非平行棱中点、并垂直于这些棱的三个平面的交点;

3、点O是通过一个面的外接圆圆心,且垂直于此圆的平面∑的直线和垂直于过不与∑平行的棱的中点的平面,且垂直于此棱的直线的交点。

一个球面是由四个非共面的点所确定的。因此,求解多面体外接球半径的任何习题都可由其内切球的证明和计算绕某个三棱柱外接球的半径(顶点是给定多面体的顶点)得出来。

参考资料来源:百度百科-外接球

北京埃德思远电气技术咨询有限公司
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式