证明方程x^3-3x+1=0有且仅有一个小于1的正实根 我来答 1个回答 #热议# 不吃早饭真的会得胆结石吗? 户如乐9318 2022-08-11 · TA获得超过6679个赞 知道小有建树答主 回答量:2559 采纳率:100% 帮助的人:141万 我也去答题访问个人页 关注 展开全部 记f(x)=x^3-3x+1则f'(x)=3x^2-3=3(x+1)(x-1),得极值点x=-1,1f(-1)=-1+3+1=3为极大值f(1)=1-3+1=-1为极小值因此f(x)的有3个零点,分别在(-∞,-1),(-1,1),(1,+∞)即(-1,1)区间有1个零点又因为f(0)=1>0,f(1)=-1>0,故该区... 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: